Abstract
We analyze theories with color-kinematics duality from an algebraic perspective and find that any such theory has an underlying BV■-algebra, extending the ideas of Reiterer [A homotopy BV algebra for Yang–Mills and color–kinematics, arXiv:1912.03110.]. Conversely, we show that any theory with a BV■-algebra features a kinematic Lie algebra that controls interaction vertices, both on shell and off shell. We explain that the archetypal example of a theory with a BV■-algebra is Chern-Simons theory, for which the resulting kinematic Lie algebra is isomorphic to the Schouten-Nijenhuis algebra on multivector fields. The BV■-algebra implies the known color-kinematics duality of Chern-Simons theory. Similarly, we show that holomorphic and Cauchy-Riemann Chern-Simons theories come with
BV■-algebras and that, on the appropriate twistor spaces, these theories organize and identify kinematic Lie algebras for self-dual and full Yang-Mills theories, as well as the currents of any field theory with a twistorial description. We show that this result extends to the loop level under certain assumptions.