Abstract
Intelligent omni surface (IOS) technology that can provide both reflection and refraction for signals impinging on its surface, was recently proposed to overcome the coverage area limitation of reconfigurable intelligent surfaces (RISs). This letter investigates the efficacy of IOS in the context of physical layer security (PLS) over wireless channels. In particular, we consider a scenario where the IOS is utilized to enhance the secrecy performance of a legitimate receiver in the presence of a multi-antenna eavesdropper. In addition, artificial noise (AN) aided beamforming is implemented to provide additional security robustness. The resultant optimization problem is non-convex and difficult to solve. Accordingly, the block coordinate descent (BCD) optimization approach is adopted, and the Lagrangian dual method is applied to reduce the complexity of the AN-aided beamforming design. Furthermore, the reflecting and refracting phase shifts are optimized via the quadratically constrained quadratic programming (QCQP) method. Simulation results validate the efficacy of the proposed algorithm and confirm the superiority of IOS over traditional RIS.