Abstract
Conductive patterns of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/multi-walled carbon nanotube (MWCNT) composites were deposited on glass substrates using a drop on demand (DOD) inkjet printer, with the concentration of CNT varied from 0.01 wt% to 0.05 wt%. We show that by increasing the concentration of the nanotubes in the ink, percolated networks of well distributed carbon nanotubes in the printed samples can be achieved. Moreover, the orientation of the nanotubes in the printed sample can be controlled using a novel simple approach. The impact of the nanotube alignment on the conduction properties of inkjet printed nano-hybrid materials is studied and shown in this Letter. Samples with aligned nanotubes show a 53% enhanced conductivity in comparison with the randomly oriented nanotubes. The results show that the electrical performance of the nano-composite can be improved further by controlling the dispersion and orientation of the nano-filler in the printed samples. Carbon nanotubes orientation control in the printed PEDOT:PSS/MWCNT nano-composite samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.