Abstract
The region of neutron-rich Cr isotopes has garnered much attention in recent years due to a rapid onset of collectivity near neutron number N=40. We report here on the first γ-ray spectroscopy beyond the (41+) state in Cr62,64, using nucleon removal reactions from several projectiles within a rare-isotope beam cocktail. A candidate for the 6+ state in Cr64 is presented as well as one for, possibly, the second excited 0+ state in Cr62. The results are discussed in comparison to the LNPS shell-model predictions that allow for neutron excitations across the N=40 harmonic oscillator gap into the g9/2 and d5/2 orbitals. The calculated level schemes for Cr62,64 reveal intriguing collective structures. From the predicted neutron particle-hole character of the low-lying states in these Cr isotopes, Cr62 emerges as a transitional system on the path to the center of the N=40 island of inversion.