Abstract
This paper revisits Grosch's work on rubber friction with Persson's contact theory. Persson's model is implemented to replicate Grosch's experiments on silicon carbide paper and compute the physical mechanism that Grosch identified as one of the main contributors to rubber friction: deformation friction. Grosch did not provide all rubber compound and surface characteristics required for the simulation work and, in order to obtain a full data set, the missing properties were adapted from literature sources and from measurements. The simulation results show that the deformation contribution is modeled correctly by Persson's model in terms of peak magnitude and sliding velocity at which the peak is located. On the contrary, poor correlation is found for the shape of the deformation friction master curve.