Abstract
We explore the ability of hyperuniform disordered structures to enhance light absorption in thin-film solar cells architectures and perform full electromagnetic wave simulations that unveil light trapping techniques capable to attain large absorption enhancements up 85% over the visible spectrum. We predicate this enhancement to the interplay between two key physical phenomena: ultimate control over the light diffraction via a hyperuniformly-patterned surface layer which results in a highly efficient coupling of light to the quasi-guided modes of the absorbing silicon film and a concomitant minimisation of the reflection losses atop of the solar absorber. Our experimental results further validate this approach, showcasing an impressive 65% enhancement in solar light absorption in a freely suspended 1-μm c-Si membrane across the spectral range from 400 to 1050nm. We also explore applications of hyperuniform disordered architectures to high-efficiency solar-thermal absorbers.