Abstract
The problem of preparing high-mobility thin InSb films is revisited for magnetoresistive and spintronic sensor applications. We introduce a growth process that significantly improves the electrical properties of thin unintentionally doped InSb layers (60-300 nm) epitaxially grown on GaAs(100) substrates by reducing the density of dislocations within the interfacial layer. The epilayer properties are well described by a differential two-layer model. This model confirms that the contribution of the interface can only be donor-like. Moreover, the electrical properties of the InSb layers change continuously away from the interface up to sample thickness of the order of 1 mum.