Abstract
The industrial scale production of silicon carbide monofilaments by chemical vapour deposition (CVD) can be disrupted by growth anomalies that initiate filament fracture during its manufacture. The anomalies take the form of growth warts on the surface of the silicon carbide fibre. Complementary 3D imaging techniques, micro X-ray computed topography (XCT) and plasma focused ion beam scanning electron microscopy (PFIB-SEM), in combination with other materials characterisation techniques (Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) analysis) have been used to investigate the nature and cause of the anomalies. Metallic tungsten particulates with an unusual dendritic morphology attached to the tungsten core were found to be the origin of the anomalies. Further investigation of the CVD system led to the observation of process-induced W oxide particulate agglomerates accumulating at the cleaning stage inlet to the reactor. These particulates became attached to tungsten wire in the cleaning stage of the CVD reactor and were rapidly reduced to elemental tungsten prior to entering the silicon carbide deposition chamber. Silicon carbide growth on the tungsten particulates results in the development of a wart-like morphology on the fibre surface. An understanding of this mechanism enabled minor modifications to reactor conditions, which prevented W oxide particulate formation and greatly reduced the occurrence of such growth anomalies.
[Display omitted]