Abstract
Spectroscopic factors of neutron-hole and proton-hole states in 131Sn and 131In, respectively, were measured using one-nucleon removal reactions from doubly magic 132Sn at relativistic energies. For 131In, a 2910(50)-keV γ ray was observed for the first time and tentatively assigned to a decay from a 5=2− state at 3275(50) keV to the known 1=2− level at 365 keV. The spectroscopic factors determined for this new excited state and three other single-hole states provide first evidence for a strong fragmentation of singlehole strength in 131Sn and 131In. The experimental results are compared to theoretical calculations based on the relativistic particle-vibration coupling