Abstract
The interesting properties of hexagonal boron nitride (h-BN) and its potential uses in thermo-structural advanced applications have been limited or restricted by its inherent brittleness, which can easily be eliminated by its fibers (h-BN) in nanoscale dimensions. The current study is based on the synthesis of nanoscale B-10-enriched fibers of h-BN ((10)BNNFs) from B-10 in the precursors instead of B in two-hour annealing at 900 degrees C and one-hour growth at 1000 degrees C. All of the (10)BNNFs are randomly curved and highly condensed or filled from (10)h-BN species with no internal space or crack. XRD peaks reported the (10)h-BN phase and highly crystalline nature of the synthesized (10)BNNFs. (10)h-BN phase and crystalline nature of (10)BNNFs are confirmed from high-intensity peaks at 1392 (cm(-1)) in Raman and FTIR spectroscopes.