Abstract
New data from the Gaia satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyse the stellar density variations in the GD-1 stream and show that they cannot be due to known baryonic structures such as giant molecular clouds, globular clusters, or the Milky Way's bar or spiral arms. A joint analysis of the GD-1 and Pal 5 streams instead requires a population of dark substructures with masses approximate to 10(7)-10(9) M-circle dot. We infer a total abundance of dark subhaloes normalized to standard cold dark matter n(sub)/n(sub,CDM) = 0.4(-0.2)(+0.3) (68 per cent), which corresponds to a mass fraction contained in the subhaloes f(sub) = 0.14-(+0.11)(0.07) per cent, compatible with the predictions of hydrodynamical simulation of cold dark matter with baryons.