Abstract
Requiring that a Hamiltonian be Hermitian is overly restrictive. A consistent physical theory of quantum mechanics can be built on a complex Hamiltonian that is not Hermitian but satisfies the less restrictive and more physical condition of space-time reflection symmetry (PT symmetry). One might expect a non-Hermitian Hamiltonian to lead to a violation of unitarity. However, if PT symmetry is not spontaneously broken, it is possible to construct a previously unnoticed symmetry C of the Hamiltonian. Using C, an inner product whose associated norm is positive definite can be constructed. The procedure is general and works for any PT-symmetric Hamiltonian. Observables exhibit CPT symmetry, and the dynamics is governed by unitary time evolution. This work is not in conflict with conventional quantum mechanics but is rather a complex generalization of it.