Abstract
Much research in psychology relies on data from observational studies that traditionally do not allow for causal interpretation. However, a range of approaches in statistics and computational sciences have been developed to infer causality from correlational data. Based on conceptual and theoretical considerations on the integration of interventional and time-restrainment notions of causality, we set out to design and empirically test a new approach to identify potential causal factors in longitudinal correlational data. A principled and representative set of simulations and an illustrative application to identify early-life determinants of cognitive development in a large cohort study are presented. The simulation results illustrate the potential but also the limitations for discovering causal factors in observational data. In the illustrative application, plausible candidates for early-life determinants of cognitive abilities in 5-year-old children were identified. Based on these results, we discuss the possibilities of using exploratory causal discovery in psychological research but also highlight its limits and potential misuses and misinterpretations.