Abstract
The first measurement of the low-lying states of the neutron-rich 110 Zr and 112 Mo was performed via in-beam γ -ray spectroscopy after one proton removal on hydrogen at ∼ 200 MeV / nucleon . The 2 + 1 excitation energies were found at 185(11) keV in 110 Zr , and 235(7) keV in 112 Mo , while the R 42 = E ( 4 + 1 ) / E ( 2 + 1 ) ratios are 3.1(2), close to the rigid rotor value, and 2.7(1), respectively. These results are compared to modern energy density functional based configuration mixing models using Gogny and Skyrme effective interactions. We conclude that first levels of 110 Zr exhibit a rotational behavior, in agreement with previous observations of lighter zirconium isotopes as well as with the most advanced Monte Carlo shell model predictions. The data, therefore, do not support a harmonic oscillator shell stabilization scenario at Z = 40 and N = 70 . The present data also invalidate predictions for a tetrahedral ground state symmetry in 110 Zr .