Abstract
As some of the older riveted railway bridges are close to or have even exceeded their theoretical fatigue lives, it is desirable to develop a comprehensive fatigue assessment methodology for fatigue-critical details. The aim of this study was to present damage and fatigue life estimates for the riveted connections of a typical riveted UK railway bridge through finite-element analyses. In particular, the effect of connection fixity and assumed fatigue detail classification, the effect of the simultaneous passage of two trains over the bridge, the effect of a reduced Young's modulus for the bridge material and the effect of dynamic amplification are studied under different loading scenarios. A historical load model was developed in order to represent bridge rail traffic between 1900 and 1970. The BS 5400 medium traffic trains were used to represent the bridge traffic from 1970 onwards. It was found that the connection damage is axle-dominated and is affected by the parameters mentioned above. The fully-fixed stringer-to-cross-girder connections were found to be the most fatigue-critical details. The damage accumulation rate was found to be small in the pre-1970 period under the historical load model but showed a considerable increase with the introduction of the BS 5400 trains (post-1970).