Abstract
To maintain the periodic orbits in a three-body regime, a high-order Target Phase Approach (TPhA) is proposed in this work. Two types of polynomial maps, the phase-angle Poincaré map and high-order maneuver map, are established respectively for the determination of stationkeeping epochs and calculation of correction maneuvers. A stochastic optimization framework tailored for the TPhA-based stationkeeping process is leveraged in search of fuel-optimal and error-robust TPhA parameters. Quasi-Satellite Orbits (QSOs) around Phobos are investigated to demonstrate the efficacy of this approach in both low-and high-fidelity models. Monte-Carlo simulations demonstrate that the baseline QSO of JAXA's Martian Moons eXploration (MMX) mission can be maintained with a monthly manuever budget of around 1.13m/s.