Abstract
This paper introduces DTACSNet, a Convolutional Neural Network (CNN) model specifically developed for efficient onboard atmospheric correction and cloud detection in optical Earth observation satellites. The model is developed with Sentinel-2 data. Through a comparative analysis with the operational Sen2Cor processor, DTACSNet demonstrates a significantly better performance in cloud scene classification (F2 score of 0.89 for DTACSNet compared to 0.51 for Sen2Cor v2.8) and a surface reflectance estimation with average absolute error below 2% in reflectance units. Moreover, we tested DTACSNet on hardware-constrained systems similar to recent deployed missions and show that DTACSNet is 11 times faster than Sen2Cor with a significantly lower memory consumption footprint. These preliminary results highlight the potential of DTACSNet to provide enhanced efficiency, autonomy, and responsiveness in onboard data processing for Earth observation satellite missions.