Abstract
Methods of generating heteroclinic connections between quasi-periodic orbits typically rely on human-in-the-loop or machine learning techniques to find intersections in sets of data in more than three dimensions. We propose a fully systematic method of generating these connections using an invariant property found in knot theory: the linking number. This method proves to be robust in detecting heteroclinic connections between isoenergetic invariant tori in the circular restricted three-body problem.