Abstract
CubeSat missions that take advantage of ride-sharing opportunities to the Moon are typically limited by a small v budget. In this paper, a patching point method is applied to design a low-energy lunar transfer for a spacecraft initially placed into a circumlunar free-return trajectory. Initial conditions generated within weak stability boundaries further guarantee ballistic lunar capture upon arrival. A large number of optimised trajectories are produced, with a minimum mission v cost of 32.51 m/s. Additionally, the B-plane values of the spacecraft during its initial flyby of the Moon are investigated. A relationship between the initial position of the Sun in the synodic frame and the B-plane values is observed, in which successful trajectories appear to favour entering into certain orbital resonances with the Moon.