Abstract
The present study is conducted in two phases. In the first phase we analyze the different aspects of gray image watermarking in a colored host. Robustness and imperceptibility are used as analysis parameters. The approaches explored and compared in this study are - watermark embedding with any one of the three RGB (Red-Green-Blue) components (single channel embedding), multichannel watermark embedding (same watermark with all channels) and multichannel embedding with equally segmented watermark. SVD (Singular Value Decomposition) is used to calculate the singular values of host image and then appropriate scaling factor isused to embed the watermark and the watermarked image is subjected to different attacks. To secure the watermark from an unauthorized access Arnold transform is implemented. From the simulation results it is observed that segmented watermark approach is better than the other two approaches in terms of both robustness and imperceptibility. In the second phase, change of robustness and imperceptibility is studied with the change of scaling factor for which PSO (Particle swarm optimization) is employed to determine the optimal values of scaling factor. The results here indicate that the use of different scaling factors (optimal) for each RGB component provides better result in comparison to a single (optimal) scaling factor in segmented multichannel approach. Overall, the experimental analysis shows that the equal distribution of gray watermark over RGB components with PSO optimized scaling factors provides significant improvement in the quality of watermarked image and the quality of retrieved watermark even from the distorted watermarked image.