Abstract
Satellites will play an indispensable part in 5G roll out and the common use of new radio (NR) air interface will enable this. Satellite-terrestrial integration requires adaptations to the existing NR standards and demands further study on the potential areas of impact. From a physical layer perspective, the candidate waveform has a critical role in addressing design constraints to support non-terrestrial networks (NTN). In this paper, the adaptability of frequency-localized orthogonal frequency division multiplexing (OFDM)-based candidate waveforms and solutions are discussed in the context of physical layer attributes of non-linear satellite channel conditions. The performance of the new air interface waveforms are analysed in terms of spectral confinement, peak-to-average power ratio (PAPR), power amplifier efficiency, robustness against non-linear distortions and carrier frequency offset (CFO).