Abstract
An aim of Internet-of-Things (IoT) networks is to enable smart cities by connecting billions of devices for various applications. Such a massive connectivity can face many vital challenges, one of which is security. Accordingly, we propose a Cooperative Jamming (CJ) scheme for multihop IoT networks, where each transmitted symbol is protected by two hybrid-duplex jamming nodes from randomly located colluding eavesdroppers. Our proposed scheme provides a significant performance enhancement compared to a conventional Single Jamming (SJ) approach, at no additional power cost. In particular, to achieve a secrecy outage probability of 10 −1 , and assuming the number of hops is 8, the proposed CJ scheme outperforms the SJ case by 3.5 dB of jamming Signal-to-Noise Ratio (SNR). Integral closed-form expressions are derived for the secrecy outage probability and verified via Monte Carlo simulations.