Abstract
In this work, thin carbon fibre reinforced plastic (CFRP) structures were coated with an organic-inorganic resin system for improved resistance to the low Earth orbit (LEO) environment. Thin structures of this type have been proposed for use in solar sails and other large deployable structures. The ultra-light, long extendible members were primarily composed of aromatic, high stiffness epoxy resin (TGDDM) cured with aromatic polyamines. This resin system was chosen because the high aromatic content provides excellent stiffness and creep resistance that are critical for this application. However, the resin’s aromaticity contributes to degradation by ultraviolet radiation and oxidation. The proposed solution involves shielding aromatic rings and organic chemical bonds that are prone to degradation by UV rays, with a cycloaliphatic resin system additionally reinforced with silicon nanostructures. By applying surface coating a significant decrease in roughness was observed and the surface degradation due to UV radiation prevented.