Abstract
This paper presents a brief account of the findings on a switched parasitic dielectric resonator antenna (DRA) array excited in a higher-order mode. The scanning phase can be changed by using switching technique and capacitor loading at the parasitic element. The driven DR and parasitic DRs have a dielectric constant of 10 and were fed by a microstrip slot aperture. The impact of mutual coupling on the reflection coefficient was examined through a numerical calculation which combines both ANSYS HFSS and MATLAB. This phased array was shown to be able to steer the antenna beam from −26 degrees to +26 degrees at 15 GHz, which is considered suitable for 5G applications. The impedance matching was maintained at all beam steering angles and a bandwidth of 2.6 GHz has been achieved.