Abstract
This work proposes a pattern identification and online prediction algorithm for processing Internet of Things (IoT) time-series data. This is achieved by first proposing a new data aggregation and datadriven discretisation method that does not require data segment normalisation. We apply a dictionary based algorithm in order to identify patterns of interest along with prediction of the next pattern. The performance of the proposed method is evaluated using synthetic and real-world datasets. The evaluations results shows that our system is able to identify the patterns by up to 85% accuracy which is 16.5% higher than a baseline using the Symbolic Aggregation Approximation (SAX) method.