Abstract
Room Impulse Responses (RIRs) measured with microphone arrays capture spatial and nonspatial information, e.g. the early reflections’ directions and times of arrival, the size of the room and its absorption properties. The Reverberant Spatial Audio Object (RSAO) was proposed as a method to encode room acoustic parameters from measured array RIRs. As the RSAO is object-based audio compatible, its parameters can be rendered to arbitrary reproduction systems and edited to modify the reverberation characteristics, to improve the user experience. Various microphone array designs have been proposed for sound field and room acoustic analysis, but a comparative performance evaluation is not available. This study assesses the performance of five regular microphone array geometries (linear, rectangular, circular, dual-circular and spherical) to capture RSAO parameters for the direct sound and early reflections of RIRs. The image source method is used to synthesise RIRs at the microphone positions as well as at the centre of the array. From the array RIRs, the RSAO parameters are estimated and compared to the reference parameters at the centre of the array. A performance comparison among the five arrays is established as well as the effect of a rigid spherical baffle for the circular and spherical arrays. The effects of measurement uncertainties, such as microphone misplacement and sensor noise errors, are also studied. The results show that planar arrays achieve the most accurate horizontal localisation whereas the spherical arrays perform best in elevation. Arrays with smaller apertures achieve a higher number of detected reflections, which becomes more significant for the smaller room with higher reflection density.