Abstract
Nonlinear model predictive control (NMPC) is proposed in multiple academic studies as an advanced control system technology for vehicle operation at the limits of handling, allowing high tracking performance and formal consideration of system constraints. However, the implementation of implicit NMPC, in which the control problem is solved on-line, poses significant challenges in terms of computational load. This issue can be overcome through explicit NMPC, in which the optimization problem is solved off-line, and the resulting explicit solution, with guaranteed level of sub-optimality, is evaluated on-line. This study presents a yaw and lateral stability controller based on explicit NMPC, actuated through the friction brakes of the vehicle. The controller performance is demonstrated during sine-with-dwell tests simulated with a high-fidelity model. The analysis investigates the influence of the weights in the cost function formulation and includes a comparison of different settings of the optimal control problem.