Abstract
This paper addresses the problem of human action matching in outdoor sports broadcast environments, by analysing 3D data from a recorded human activity and retrieving the most appropriate proxy action from a motion capture library. Typically pose recognition is carried out using images from a single camera, however this approach is sensitive to occlusions and restricted fields of view, both of which are common in the outdoor sports environment. This paper presents a novel technique for the automatic matching of human activities which operates on the 3D data available in a multi-camera broadcast environment. Shape is retrieved using multi-camera techniques to generate a 3D representation of the scene. Use of 3D data renders the system camera-pose-invariant and allows it to work while cameras are moving and zooming. By comparing the reconstructions to an appropriate 3D library, action matching can be achieved in the presence of significant calibration and matting errors which cause traditional pose detection schemes to fail. An appropriate feature descriptor and distance metric are presented as well as a technique to use these features for key-pose detection and action matching. The technique is then applied to real footage captured at an outdoor sporting event. ©2009 IEEE.