Abstract
Several systems have been developed with aerial-aquatic locomotion capabilities but without demonstrating consecutive transitions to flight from water. Moreover, while some multirotor vehicles possess the ability to operate in both air and water [108, 109], the transition to flight is typically constrained to very calm sea conditions. Fixed-wing robots able to transition dynamically between water and air through high-power thrust bursts represent a low-cost, versatile and more reliable solution. Compared to multirotor vehicles, this approach that would simultaneously result in an increased flight range and allow for aquatic escape in a wider variety of conditions.