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Abstract

The relationship between the diversity of mixed-species microbial consortia and their
electrogenic potential in the anodes of microbial fuel cells was examined using
different diversity measures as predictors. Identical microbial fuel cells were sampled
at multiple time-points. Biofilm and suspension communities were analysed by
denaturing gradient gel electrophoresis to calculate the number and relative
abundance of species. Shannon and Simpson indices and richness were examined for
association with power using bivariate and multiple linear regression, with biofilm DNA
as an additional variable. In simple bivariate regressions, the correlation of Shannon
diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power
and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5,
p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a
regression model can be constructed (r=0.73, p<0.001). Ecological parameters such as
the Shannon index are predictive of the electrogenic potential of microbial

communities.
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1. Introduction

Microbial fuel cells (MFCs) are a promising technology for the generation of energy
and treatment of wastewaters (Sun et al 2010; Rahimnejad et al 2012). These devices
are fed substrates which are processed by the metabolism of the microorganisms
present in the anode (either single species or multi-species consortia). As the system is
kept under anaerobic conditions, organisms will use the anode of the MFC as their
terminal electron acceptor (Logan et al 2006). A number of microbial species has been
observed to be electrogenic, and representatives of most classes of bacteria have been
reported to be present in the microbial communities used in MFCs (Logan et al 2006;
Nimje et al 2012). Many different parameters affect the power output and
performance of MFCs. In addition to internal resistance, cathode performance and
proton transfer, the power output of an MFC will also depend on the efficiency with
which the community (usually attached to the anode as a biofilm) transfers electrons
to the anode, and the potential link between community structure and functioning in
MPFCs has been recently shown for the first time (Wrighton et al 2010). While a great
variety of organisms have been shown to be electrogenic, the taxonomic structure of
communities is highly variable with no established taxonomic rules as to what
constitutes an electrogenic organism. It has also been observed that there is no ideal
electrogenic consortium, and observed trends include a tendency for enriched mixed
electrogenic communities to contain a larger proportion of B-Proteobacteria (Chae et
al 2009). While communities have been characterised in previous work, generally
studies focus on variation in substrate, reactor design, or monocultures of novel

organisms (Di Lorenzo et al 2010; Kiely et al 2011; Wang et al 2011). Interestingly,
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ecological models to discover predictive relationships between fundamental
community ecology and power output in replicate systems have not been used to a
large extent in MFC research (Gruning et al., submitted). Diversity is a logical starting
point for this type of analysis, as is an assessment of the value of different methods for
its measurement. It has been observed that diversity varies significantly with design,
and links have been made between more powerful fuel cell architecture and increased
diversity. The systems that have been compared were not identical in design and
operating parameters, lending the situation to interpretation (Kim et al 2011; Sun et al

2010).

The diversity and abundance in microbial communities can be assessed by a number of
methods commonly used in ecological studies. The Shannon and Simpson indices of
diversity are two of the most widely used measures for biodiversity in macro ecology
(Keylock and Lane 2005; Hejda et al 2009), while Richness, a measure of species
number, is also usually employed (Wilson and Brennan 2004; Grunewald 2006). The
Shannon index has been used in the analysis of microbial communities (Gafan et al
2005; Steen et al 2010). Interestingly, no examples could be found in microbial ecology
of biodiversity being examined as a predictive independent variable for a performance
measure rather than a dependent measure in its own right. This is likely to be because
most ecological analyses assume biodiversity is an inherently desirable outcome,
rendering it the dependent variable in analysis. Despite the important role of microbial
communities associated with the anode, there has not been a systematic quantitative
analysis of the predictive power of different measures of diversity on the output of

microbial fuel cells.
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The objective of this study is to analyse the predictive power of the Shannon index, the
Simpson index and the richness of the anodic microbial communities with regard to
the power output of replicate MFCs over the course of 91 days. As different measures
of diversity weigh low and high abundance components differently, it is interesting to
analyse which notion of diversity best captures those structural aspects that support
community function. Richness, the inverse Simpson index and the Shannon index are
members of one family of indices “D (Hill 1973; Jost 2006; Tuomisto 2010), with the
parameter g determining how a particular index weighs relative differences in the
component abundances. Lower values of g emphasise the contribution of low
abundance components to diversity, while higher g values highlight the contribution of
predominant components. The case of g=0 corresponds to species abundance being
ignored completely and only their presence or not is taken into account: °D is the
species richness. The case of g=1 gives all component abundances their “natural”
weight; an example of 2D is the Shannon index. Finally D is the (inverse) Simpson
index, a measure of the diversity of the system. The numerical value of all indices D is
interpreted as the “effective species number”, ESN (Tuomisto 2010), and all ?D yield
value N if N species are present with equal abundance. Hence, it can be seen as the
number of evenly distributed species required to produce the observed index value.
The ESN is considered to represent a measure of “true diversity”, and the different ‘D

allow comparisons between variables to be carried out on a scale using the same units.

Richness is the simplest measure of community diversity, and is defined as the number
of distinct species present within a given community. Richness does not take account

of the relative abundances of the species present or any other quantifiable properties
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of the community. Hence the effective number of species for this measure is the actual
number of species. Of the three measures considered here, Richness gives the least

information about the distribution of species.

The Shannon index is a measure of information entropy (Cover and Thomas 1991), and
describes not only the presence and absence of species but also the information
contained in their relative abundances. The sum of the product of the probabilities

with their natural logarithms gives the value of the Shannon index for a community.

R
H'= —Z P, InP,
i=1

To convert the Shannon index into the effective species number the exponential is

taken.

ESNy; = 1D = expH'

The Simpson index A is the sum of the squares of the fractional species abundances,

and is used to assess diversity.

R
1= P
i=1

where P;is the fractional abundance of the ith species.

The Simpson index value represents the probability that two organisms chosen at
random from the community will be of the same species. Throughout this work, the

inverse has been used
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2. Materials and methods

2.1 MFC setup and operation

Four replicate continuously sucrose-fed microbial fuel cells (MFC1, MFC2, MFC3, and
MFC4) were used. The single-chamber MFCs consisted of anode chambers (9 cm®) and
cover plates made of Perspex, with stainless steel metal plates serving as a contact
between the cathode and the electrical circuit. The anode electrode contained a
carbon fibre veil (PRF Composite Materials, UK) with polyvinyl alcohol binder, with a
geometric area of 32 cm?, which was placed inside the anode chamber and connected
to an electrical circuit with an insulated Ni/Cr wire (Advent Research Materials, UK)
knitted across the multi-layered anode. The air-breathing cathode consisted of type A
carbon cloth (9 cm?, E-TEK) coated with 4 mg cm™ of Pt black catalyst with
polytetrafluoroethylene binder. The platinum side of the cathode was painted with
0.5-1.0 mg cm ™2 of Nafion perfluorinated ion-exchange ionomer (5% w/v dispersion in
lower aliphatic alcohols and H,0, Aldrich). A Nafion-115 proton-exchange membrane

(20 cm?, DuPont) separated anode chamber from the cathode.

MFCs were started up by suspending anaerobic digester sludge (sieved through 0.6-
mm mesh) in sucrose-containing medium (per litre: NH4Cl, 0.31 g; NaH,-PO4-H,0, 5.38
g; Na,HPO,, 8.66 g; KCl, 0.13 g (pH 7.0) (Kim et al 2007), supplemented with trace
element (12.5 mL) and vitamin (12.5 mL) solutions (Lovley et al. 1984) at a 10% volume
ratio. The concentration of sucrose in the medium was 5 gL™" in batch operation and

0.1 gL™ in continuously fed MFCs. The MFCs were operated in batch-mode during the
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initial enrichment period (approximately 2 weeks). During that time, the anodic
suspension was repetitively replaced (five times) initially by mixing (1:9) anodic
suspension with fresh N,-purged sucrose-containing medium and then after 1 week by
replacing the entire volume of the anodic suspension with fresh medium. MFCs were
operated in batch-mode until repeatable cycles of voltage generation were observed.
In continuous-mode, medium was supplied to MFCs at a flow rate of 0.18 mL min~* and
purged with N, gas. The MFCs were operated at room temperature (21-22°C). MFC
voltage was monitored using an Arbin BT2000 battery tester (Arbin Instruments, USA)
controlled with MITS Pro software (Arbin Instruments) across a fixed external
resistance of 40 kQ. Polarisation curves were recorded with decreasing external

resistance (700 kQ-500 Q) and measuring the decrease in voltage.

2.2 Analysis of microbial community composition

Peak power density and community composition were analysed at 14, 28, 56, 72 and
91 days, except for MFC3 for which data was available for time points 25, 40, 54, and
75 days. To determine community composition at each time point, samples of biofilm
(1 cm?) and bacterial suspension (1 ml) were removed from the anode and the anodic
chamber, respectively. DNA was directly extracted from samples using FastDNA Spin
Kit for Soil (MP Biomedicals, UK). For sampling of the anode electrode, each MFC was
temporarily disassembled in an aseptic environment, a 1-cm?® anode sample cut out
using a sterile scalpel and the MFC reassembled. Prior to DNA extraction, the anode

suspension samples were centrifuged (10,000xg, 5 min), washed three times with 1 mL
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PBS and resuspended in 100 uL of nuclease free water. For DNA extraction, samples
were placed into 2.0 ml tubes containing a lysing matrix (mixture of ceramic and silica
particles) and samples homogenized in the FastPrep® instrument. Following lysis,
samples were centrifuged to pellet anode electrode fibres, cell debris and lysing
matrix. DNA was purified from the supernatant with a silica-based procedure using
filters provided with the kit. The amount and quality of DNA was measured using

LabTech-Nanodrop ND100 spectrophotometer.

The partial bacterial 16S rRNA genes were amplified using the bacteria-specific forward
primer 341F (E. coli 16S rRNA positions 341-357) (Muyzer et al 1993) and the universal
reverse primer 907R (E. coli 16S rRNA position 907-926) (Muyzer et al 1996). A GC-
clamp was added to the forward primer at the 5’-end to stabilize the melting
behaviour of the DNA fragments in the DGGE (Muyzer et al 1993). PCR reaction
mixtures contained 1x Taq PCR buffer (10 mM Tris-HCI, 1.5 mM MgCl,, 50 mM KCI, pH
8.3 at 202C), 200 uM dNTP, 0.2 uM each primer, 0.025 U pL™ of Tagq DNA polymerase
(Roche, UK), 400 ng L™ of bovine serum albumin (BSA, Fermentas, Canada) and
nuclease-free water (Promega, UK) to a final volume of 50 pL, to which 1 uL of
template was added. PCR was carried out using a GeneAmp PCR System 9700 (PE
Applied Biosystems, USA) with the following program: 952C for 5 min; 25 cycles of
942C for 0.5 min, 502C for 1 min and 7229C for 2 min; followed by final extension at
7229C for 7 min. These bacterial community samples were analysed by denaturing
gradient gel electrophoresis (DGGE). The relative species abundances in the

communities were inferred from the relative band intensities calculated by dividing the
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peak area of a band by the sum of peak areas of all bands in a lane (excluding
chimaeras). DNA was extracted from bands for species identification by sequence

analysis.

A complete description of the methods and further technical details are given

elsewhere (Kim et al 2011; Beecroft et al 2012).

2.3 Statistical analysis

2.3.1 Variables

The three diversity measures (Richness, Shannon index, and Simpson index) were
calculated according to the formulae presented above. Calculations were carried out
for all microbial fuel cells, each with 4 or 5 time points, for both the anode biofilm and
the anode compartment suspension. All diversity values were converted into an
effective species number with the unit of species equivalents. This was to ensure that
diversity data were in the same units, preventing the inadvertent comparison of linear
to non-linear indices which can cause overestimation of correlations for non-linear
indices due to reduced variance (spread). The DNA content of the biofilm (ug cm™) or
the suspension (ug cm™) was included as an approximation of “total community size”.
Quantification of the DNA content of the biofilm is useful when comparing the effects
of diversity on other variables, as larger communities could produce more electrons.
Another theoretical angle on the inclusion of this variable is as an approximation of the

size of the sample used to determine community diversity. Larger sampling sizes may

11
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have an effect on the predictive power of the diversity estimate, and it is therefore
intuitively useful to consider this variable when attempting to use diversity to predict
community performance. Biomass was not measured directly due to the difficulty of
separating intact cells from the carbon fibre anode. The DNA content of a microbial
community has been used as a proxy for the number of cells present in the community

(Kubota et al 2009).

2.3.2 Regression modelling

To establish a specific relation between power (as the dependent variable) and the

DNA content and the diversity measures as the independent variables, a linear model
was used as the first approximation. The linear regression was performed using PASW
Statistics 18, Release Version 18.0.0 (SPSS Inc., Chicago, IL). As variables may correlate

with each other, diagnostics for co-linearity were also carried out for all models.

12
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3. Results and Discussion

The communities studied are dynamic and undergo large changes in power output and
diversity across the observation period. This allows the determination as to what
extent diversity is associated with increased or decreased power output across all
communities sampled. The use of identical fuel cell modules operating simultaneously
and connected to the same measuring system allows a meaningful analysis of
community development while minimising variation due to differences between the
cells, or measurement equipment. A longitudinal approach allows an in depth
investigation as to which of the community parameters may be associated with

increases or decreases in fuel cell power output.

3.1. Bivariate relationships

In Table 1 the results of the linear bivariate correlations between each of the diversity
indices and either the peak power output of the MFCs (Table 1 A) or the community

age (Table 1 B) are shown.

3.1.1 Community age

The setup of microbial fuel cells involves inoculating the sterile anode chamber with
cultures or environmental samples of microorganisms which may have electrogenic
activity. Planktonic microbes subsequently attach to the electrode and form a biofilm;
this biofilm is then able to transfer electrons to the anode. After inoculation, the initial

community evolves with time (acclimation), resulting in an increase in electrical output

13
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until a constant value is observed. It is the purpose of this work to demonstrate which

biological variables are most associated with these increases in power output.

A number of changes take place as biofilm communities emerge, including increases in
community diversity (Shannon: r= 0.52, p=0.013; richness: r=0.63, p=0.002; Simpson
ESN: r=0.37, p=0.095), as shown in Table 1A. The richness of the suspension in the
anode compartment is also observed to increase significantly with the passage of time
(Richness: r=0.67, p<0.001; Shannon ESN: r=0.24, p=0.29; Simpson ESN: r=0.018,
p=0.94), but this is not the case for other measures of diversity. Power output from the
fuel cells also increases with time (r=0.7, p=<0.001) as does total biofilm DNA (r=0.42,

p=0.05).

3.1.2 Diversity

The correlation coefficient is greater between peak power output and the Shannon
ESN than for the other measures of diversity (Table 1B). The correlation between
power output and the Shannon ESN is also larger (r=0.65, p<0.001) as compared with
that of either the Simpson index or richness (r=0.5, p=0.018 and r=0.39, p=0.076

respectively).

Most interestingly both the richness of the biofilm and suspension were more strongly
correlated with time than biofilm Shannon diversity or biofilm DNA content yet
richness has no significant association with power output (Table 1A). Fig 1 shows the
linear regression of community age with power and Shannon diversity of the biofilm,

respectively.
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Results from the bivariate correlations (Table 1A and 1B) show that while the metrics
correlate, they have different correlations with the power output of anodic

communities.

3.2 Relationship between suspension and biofilm diversity

Figure 2 shows the linear regression between the Shannon ESN diversity of the
suspension in the anode compartment and the biofilm. A significant correlation exists
between all diversities of these two populations of cells (Shannon: r=0.65, p=<0.001;
Richness: r=0.69, p=<0.001; Simpson: r=0.5, p=0.018). This association is most likely to
be due to migration of organisms between the two populations. One of the most
striking observations which can be made from the bivariate correlations (Table 1A) is
the lack of a significant correlation between the suspension diversities and power
output which coincides with a strong significant positive correlation between biofilm

diversities and power output.

3.3 Relationships between different measures of diversity

The different measures of biofilm diversity are strongly correlated with one and
another (Figure 3); richness correlates with the Shannon ESN (r=0.83, p=<0.001) and
with the Simpson ESN (r=0.74, p<0.001), and the Shannon ESN correlates with the

Simpson ESN (r=0.91, p=<0.001).

3.4 Community DNA

The amount of DNA recoverable per square centimetre of biofilm is significantly

associated with higher power outputs (r=0.56, p=<0.007) from MFCs (Table 1B). This is

15
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likely to be due to denser biofilms containing larger numbers of cells and therefore
greater quantities of DNA. A biofilm with a greater population of cells should have a
larger metabolic activity and therefore would have a higher capacity to donate

electrons to the anode.

3.5 Linear regression models

Multiple linear models are widely used in ecology, econometrics and psychology to
study the interactions of a number of variables within a complex system (Pires et al
2008). Here they are used to relate the biofilm and suspension diversity for all

community samples to the peak power density (expressed in W. m™) of the MFCs.

In total three regression models were constructed, all of which contain two predictor
variables. The two community variables were biofilm diversity, as measured in terms
of one of the three diversity measures, and biofilm DNA per cm?; the dependent

variable was power density.

The regression models were all found to be statistically significant as overall models
but with large differences in the significance and association of the component
variables. Table 2 summarises the overall model performance, while Table 3 lists the
coefficients for the component variables. The strongest relationship with power
density is seen for the Shannon index and biofilm DNA model (r= 0.73, p<=0.001).
Table 3 shows the coefficients for the different component variables within the
models, with the main coefficient in assessing the value of these models being the beta
weight (B). A weight of 1.0 means that the dependent variable changes one

standard deviation with a one standard deviation change in the independent variable

16
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in question, when all the other variables in the model are held constant. The
observation of significant (p<0.01) B weights for the biofilm Shannon index and for the
biofilm DNA content within the context of a significant (p<0.001) overall model
indicates that these variables together are better predictors of power output than they
are individually. Biofilm richness and the Simpson index fail to reach statistical
significance within their respective models. The only statistically significant predictor
outside the biofilm Shannon model is the biofilm DNA content in the richness model
(B=0.46, p=0.024). It must be noted that the failure to reach significance within the
context of multiple regression models for the Simpson index and the richness suggests
that these are too weak as predictors on their own to be significant with the number of
cases available for this analysis. This does not mean they are not useful, but only that
they are much less strongly associated with power output than the Shannon index
when other variables are considered. This difference is quite substantial and suggests
that, within the realistic data limitations of studies in this field, the Shannon index
represents a much more useful measure than other approaches to measuring diversity

as functionally relevant to power output.

3.6 Microbial fuel cell performance and diversity

Microbial fuel cells improved their performance progressively as communities
developed on the anode. In this work interactions between the diversity of the
suspension and the biofilm are considered with regard to their possible effects on MFC
power output. It is observed that the diversity of the anode biofilm has a positive

association with the electrogenic potential of the MFC while the diversity of the
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planktonic community (i.e. suspension) has no significant effect. This may reflect the
fact that only species in the anodic biofilm can participate in electron transfer, while
species in suspension may divert available energy from substrate towards other
metabolic activities. The association between diversity and community electricity
production seems to suggest that community functioning is a determinant of
electrogenic potential in microbial communities. The density of the biofilm as
measured using the DNA content is also positively associated with the MFC power
density. The DNA content of a microbial community is a good proxy for the number of
cells present in the community (Kubota et al 2009), and DGGE is a standard,
straightforward and widely used molecular method providing reliable results for the
analysis of community structure in environmental samples (Dong and Reddy 2010; Ling
et al. 2010) and laboratory mixed cultures (Yang et al 2012; Zhang et al 2011). A
combination of PCR-DGGE and DNA content analysis has been shown to be useful to
monitor changes in the composition and structure of microbial communities (Mallin

and lllmer 2008).

Probably the most interesting observation is that the Shannon index of the biofilm
community is a very strong predictor of power density and that other indices such as
richness and the Simpson index are not significant predictors when biofilm DNA
content is considered as well. It is acknowledged that more cases would improve the
statistical power of this type of analysis but the case numbers used here are
representative of the volume of community data that can be realistically collected for
bench-top MFC setups. It is also important to note that while the statistical evidence is

very compelling for an association between Shannon diversity and power output, this
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work demonstrates association not causation. It is possible that a latent process which
may affect power output could also cause increases in both Shannon diversity and
microbial density. Further illumination of the ecology of electrogenic communities
would be highly advantageous and could offer further strategies for improving MFC

productivity (Gruning et al, submitted).

By demonstrating a strong statistical link between the value of the Shannon index and
power output in MFCs, it is possible to infer new directions for research into
electrogenic communities and to suggest an ecological basis for some published
observations. Such directions would involve factors such as pH, which has been
observed to increase biodiversity in unrelated systems (Fierer and Jackson 2006) or
salinity, which has been linked to a decrease in microbial diversity (Wang et al 2010). It
is a rule of biogeography that the larger the area of the community studied the greater
will be the diversity of the organisms observed (Kostylev et al 2005). In the particular
case of MFCs, those effects add scientific merit to approaching improved efficiency by
raising and buffering pH and increasing the porosity and colonisable surface area of
MFC anodes. Interestingly, pH has already been observed to increase fuel cell power
output although diversity was not suggested as mediating the relationship (Behera et
al 2009). Three-dimensional electrodes with large conductive surface areas have also
been observed to produce greater power outputs for fuel cells (Di Lorenzo et al 2009).
It is tempting to speculate that diversity is a major background effect unifying the

interesting results reported in published experimental data.

3.7 Functional relationship between diversity and power output
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A number of explanations for the association between diversity and electrogenic
potential are apparent from the literature. It has been established that “ecosystem
functioning” or the overall metabolic potential of a microbial community is linked to
diversity (Bell et al 2005). It is explained that this occurs because each organism has a
unique pattern of metabolic utilisation; the greater the diversity, the more efficiently
the community can utilise the available substrates to produce energy, including those
produced by other microbes. Thus greater diversity allows networks of metabolic
interdependency to form within communities, further enhancing the functioning of the
community. The advantage in predictive power of the Shannon index (Shannon
entropy) when compared to other measures of diversity may also be caused by the
degree to which these indices are affected by evenness and low abundance species.
Use of richness assumes that all species contribute equally to community functioning.
This is unlikely, as the evenness of the overall community will to some extent
determine the possible volume of interactions between species. A community of
several similarly abundant species will have more possible metabolic interactions than
a community where most of the organisms are of a single species. The Simpson index
very effectively captures this evenness, as mathematically it represents the probability
that two randomly selected individuals in the community will be of the same species.
This results in the opposite problem to richness measurements: low abundance
species are given very little weight and are assumed to contribute in direct proportion
to their (low) abundance. However, species at low abundance could carry out key
processes within a metabolic network, and therefore may show effects

disproportionate to their abundance. The value of the Shannon index is strongly
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influenced by both community evenness among dominant species and gives low
abundance species greater weighting. Finally, recent work (Haegeman et al. 2013) has
shown that indices such as Shannon and Simpson with g=1 and g=2 are better at
predicting real population diversity from limited sample data. This may be a major
factor in the predictive value of Shannon ESN over richness. It does not by itself explain
the difference in the ability to predict MFC power output between the Shannon ESN
and Simpson ESN. This constitutes mathematical acknowledgement that low
abundance species can make disproportionate contributions to community
functioning, while acknowledging the importance of evenness amongst the dominant

species.

4. Conclusions

The Shannon diversity index of the anodic microbial consortia in a microbial fuel cell
shows a stronger correlation with the electrogenic potential than the correlation
observed with other diversity indices. The Shannon index and the DNA content of the
community (as an additional variable) can be used as predictors of the power output of
the system, obtaining a strong correlation in a regression model. The results presented
here demonstrate that ecological parameters such as the Shannon index can be used
to predict the electrogenic potential of anodophilic microbial communities to an extent

that has not been found with taxonomic variables.
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518

519
520
521
522

Pearson correlation
coefficient (R)

with power density (W m™). *: Statistical significance value < 0.05

Significance (p)

Community age
Peak power
Biofilm Shannon ESN
Biofilm Simpson ESN
Biofilm Richness
Biofilm DNA (ug cm™)
Suspension Shannon ESN
Suspension Simpson ESN
Suspension Richness

Suspension DNA (pg cm3)

0.7

0.52

0.37

0.63

0.42

0.24

0.018

0.67

0.07

<0.001*

<0.013*

0.095

0.002

0.05*

0.29

0.94

0.001*

0.77

Pearson correlation
coefficient (R)

Significance (p)

Power density
Biofilm Shannon ESN
Biofilm Simpson ESN

Biofilm Richness
Biofilm DNA (ug cm™)
Suspension Shannon ESN
Suspension Simpson ESN
Suspension Richness

Suspension DNA (pg cm3)

0.65

0.50

0.39

0.56

0.36

0.29

0.33

0.04

0.001*

0.018*

0.0076*

0.007*

0.097

0.2

0.14

0.86

Table 1. Linear bivariate correlations between each of the diversity indices and the peak power output
of the cells. A: Bivariate correlation with community age; B: Bivariate correlation of community variables
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523 Table 2. Summary of multivariate models using community variables. All multiple regression
524 models take account of biofilm DNA content (pg cm™). Variance inflation factors (VIFs) were
525 less than 5 for all variables in all models. *: Statistical significance value < 0.05

526
527
Correlation
Model coefficient Significance
(R) F (p)
Shannon (ESN) 0.73 10.89 <0.001*
Simpson (ESN) 0.60 5.13 <0.017*
Richness 0.64 6.45 <0.007*
528

529



530
531

532

533

534

535

Table 3. Multiple regression coefficients for the different component variables within the
models, assessed by the B weight. *: Statistical significance value < 0.05.

Coefficients

Shannon model
Shannon (ESN)
Biofilm DNA (ug.cm'z)
Simpson model
Simpson (ESN)
Biofilm DNA (ug.cm'z)
Richness model
Richness (ESN)
Biofilm DNA (ug.cm'z)

0.51
0.36

0.28
0.42

0.33
0.46

t

3.03
2.16

1.34
2.00

1.76
2.45

<0.007*
<0.044*

0.197
0.061

0.095
0.024*
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538

Figure 1. Linear relationships between time (expressed as the age of the community)
and: (top) Peak power output; (bottom) Shannon diversity (ESN) in the biofilm.
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541

Figure 2. Linear relationship between the Shannon diversity (ESN) of the MFC anodic
biofilm community and the anodic planktonic community.
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546

Figure 3. Linear relationships between each of the diversity indices and the other two
diversity indices (left) and the peak power output of the microbial fuel cells (right). The

diversity indices (Shannon entropy, Richness and Simpson Index) were calculated from
DGGE data and expressed as ESN.
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