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Abstract—The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through
incorporating ideas from single frame object recognition and adapting them for temporal based action recognition. Inspired by the
success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to
describe actions, and in action recognition, the features used are often engineered to fire sparsely. This is to ensure the problem
is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class
discrimination are obtained from this approach. In contrast, we propose to initially use an over complete set of simple 2D corners in
both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At
each stage of the hierarchy, the most distinctive and descriptive features are learnt efficiently through data mining. This allows large
amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound
features become more complex, discriminative and sparse. This results in fast, accurate recognition with real-time performance on
high resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and
accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art datasets, the popular KTH dataset to
provide a comparison with other state-of-the-art approaches, the Multi-KTH dataset to illustrate performance at simultaneous multi-
action classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2
datasets, provide challenging complex actions taken from commercial movie sequences. For all four datasets, the proposed hierarchical

approach out performs all other methods reported thus far in the literature, and can achieve real-time operation.

Index Terms—Action Recognition, Data Mining, Real-time, Learning, Spatio-temporal

1 INTRODUCTION

HE quantity of video data containing human action
Tis constantly growing, not only in terms of TV and
movie footage but also with the revolution in personal
video recording for upload to sites such as YouTube?™
or Google videos™ . With this growth comes the need
for automatic video analysis and the recognition of
events. Often, major events are delineated by actions, for
example, the scoring of a goal, two people hugging, or
some furtive behaviour in a surveillance image, exam-
ples of which are shown in Figure 1. Many approaches to

Fig. 1. Examples of human actions; (a) scoring of a
football goal, (b) people hugging, (c) a fight scene

the recognition of actions extend object recognition ap-
proaches. The two problems have many shared aspects,
including the necessity to handle significant within-class
variation, occlusions, viewpoint, illumination and scale
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changes as well as the presence of background clutter.
Figure 2(a-b) illustrates some of these issues with two

(b)
Fig. 2. Examples of Running from the KTH dataset [1]

radically different images of people running. Similarly,
Figure 17 shows the variability of the action Sit Up
from the Hollywood dataset [2]. In the context of object
recognition, it is popular to represent an object as a bag of
visual words via a histogram [3]. This histogram of words
can then be used in a classifier architecture to discrim-
inate against other classes of objects. However, not all
words will be informative in terms of describing the ob-
ject’s within-class variation while discriminating against
between-class variation. This makes the selection of the
most informative words vital. The common methods of
selecting words are through machine learning techniques
such as Boosting [4] or Support Vector Machines [1] and
adaptations such as Multiple Instance Learning (MIL)[5].
While these approaches can provide excellent results for
object recognition, it has not been shown that they can be
directly transferred into the temporal domain, for action
recognition, without compromise. In order to scale to the
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temporal domain, features are typically engineered to oc-
cur sparsely to reduce computational overheads [6]. This
allows the representation to be tractable and features
are assumed to be the most descriptive for the learnt
actions. However, sparse features may disregard impor-
tant between-class discriminatory information causing a
reduction in performance. Recent studies in both the spa-
tial [7] and temporal [8] domains explore the variability
in the descriptive/discriminative power of such features.

An alternative approach is to use a more exhaustive
feature set and dense features have proved beneficial[9].
However, this places considerable computational de-
mands upon the feature selection process and there-
fore different methods are required to learn the action
representations. Data mining provides such a method
and can process vast quantities of data in an efficient
and effective manner. Data mining has been successfully
used in recent work [10], [11], [12], [13]. Specifically,
we propose the use of data mining to allow a multi
stage classifier to be learnt from a large over-complete
set of simple features. The simple features are grouped
both spatially and temporally into compound features
of increasing complexity. Initially, a very localised neigh-
bourhood grouping is used but then the volume of the
neighbourhood is increased at each level. To allow for
scale invariance, only the relative position and scale of
compound features are used. By using a hierarchical
approach, complex actions such as kissing or getting out
of a car can be modelled in near real-time. In addition,
due to the exhaustive nature of the search, features that
maximise class discrimination are found. In experiments,
we show that the method out performs other state-of-
the-art approaches on a range of popular human action
recognition datasets, including the KTH dataset [1] and
the more challenging Hollywood [2] and Hollywood2 [14]
datasets. In addition, the Multi-KTH [15] dataset is used
to demonstrate performance at classifying and localising
multiple actions in noisy cluttered scenes containing
camera motion.

In this manuscript we build upon our previous work
in [11] and [13]. We generalise the use of the hierar-
chy and provide a more detailed formalisation of the
stages of the approach. Within the results section there
is extensive analysis and validation of the approach
on four increasingly complex datasets, we also provide
insight into the effect of encoding strategy, hierarchy
level and feature complexity on speed and accuracy. The
paper is organised as follows. Initially, an overview of
recent related work is given in section 2, while section 3
explains the basic approach. Data mining is presented
in section 4 and the detection and hierarchical grouping
of features is explained in sections 5 and 6. Extensive
results and conclusions are presented in sections 7 and
8 respectively.

2 RELATED WORK

Within the field of object recognition, the use of the
spatial representation of local features has shown con-

siderable success [10], [16], [17] and has been extended
to the temporal recognition of actions. However, due
to data constraints, the methods typically use a sparse
selection of local interest points. Scovanner et al [6]
extended the 2D SIFT descriptor [18] into three dimen-
sions, by adding a further dimension to the orientation
histogram. This encodes temporal information enabling
it to outperform the 2D version in action recognition.
Similarly, Willems et al [19] extended the SURF descrip-
tor to the spatio-temporal domain. Schiildt et al [1] and
Dollar et al [20] employ sparse spatio-temporal features
for the recognition of human (and mice) actions. Schiildt
takes the codebook and bag-of-words approach, often
applied to object recognition, to produce a histogram
of informative words for each action. Similarly, Dollar
takes the bag of words approach but argues for an even
sparser sampling of the interest points. Niebles and Fei-
Fei [21] introduce hierarchical modelling that can be
characterised as a constellation of bags-of-words. The
hierarchical modelling provides improved performance.

Much of the early work in action recognition was
tested on relatively simple, single person, uniform back-
ground sequences [1], [22]. However, these datasets are
simplistic and therefore unrealistic. To address this de-
ficiency, more natural and diverse video datasets are
currently being developed. Laptev et al [23] expanded
the ideas proposed by Ke et al [24] to apply volumetric
features to optical flow [25], [26]. Uemura et al [15] used
a motion model based on optical flow combined with
SIFT feature correlation in order to accurately classify
multiple actions on a sequence containing large motion
and scale changes. Laptev [23] both exploits the motion
(Histogram of optical flow, (HoF)) and appearance (His-
togram of Orientation, (HoG)) of the actions, creating
a boosted action classifier for recognising the human
actions of smoking and drinking. They observed that
both motion and shape are essential for accurate classifi-
cation in complex videos. Laptev et al [2] then extended
his previous work [23] to classify 8 complex natural
actions found within Hollywood movie films including
Answerphone, GetOutCar and Kiss. Multiple scales are
used to extract volumes centred over detected interest
points. Each volume was subdivided into a number of
cuboids, and in each cuboid, HoG and HoF features are
computed and concatenated. A bag of spatio-temporal
feature words was then built and a non-linear SVM
used for classification. The use of a volume indicates the
importance of the spatio-temporal relationship between
the features.

A further idea that is being exploited to achieve suc-
cess on complicated datasets is that of identifying con-
text. Han et al [27] and Marszalek et al [14] learn the con-
text of the environment in addition to the actual action.
Han applies object recognition to learn relationships such
as the number of objects and distance between them,
in order to boost a standard SIFT based HoF/HoG [2]
bag of words approach. Marszalek et al [14] builds
on the previous work by Laptev [2] by learning the
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context in which actions occur. They use the intuition
that certain actions will only happen in specific scenes,
for example GetOutCar will occur only in scenes labelled
as Outdoors or InCar. Therefore, by detecting the scene
in which the action is occurring, the action classification
can be improved. The scene model is learnt using 2D
Harris corners with SIFT descriptors, while using the
HoF and HoG descriptors of Laptev [2] to recognise
the action. The addition of the scene information allows
for an accuracy increase of between 1% and 10% per
action. At the other extreme Wang et al [8] compare
different traditional sparse interest point detectors with
dense sampling of feature points and find that dense
sampling outperforms all other approaches for realistic
datasets. However, they note that the very large number
of features can be difficult to handle compared to the
sparsely engineered interest point detectors.

The scale of the datasets in temporal based action
recognition directly lend themselves to data mining algo-
rithms, especially where only weak supervision is avail-
able. However, most previous applications of mining
have been within the imaging field. Tesic et al [28] used
a data mining approach to find the spatial associations
between classes of texture from aerial photos. Similarly
Ding et al [29] derive association rules on Remote Sensed
Imagery data using a Peano Count Tree (P-tree) structure
with an extension of the more common APriori [30]
algorithm. Chum et al [31] use data mining to find
near duplicate images within a database of photographs,
while Quack et al [10] applied Association rule data
mining to object recognition by mining spatially grouped
SIFT descriptors. Yuan et al [32] use frequent itemset
mining to first select the weak classifiers for Adaboost
to the applied to, they argue that this method removes
poor classifiers that could reduce the accuracy even after
boosting.

In summary in can be seen that most published
approaches use a two state process, involving feature

detection and description, followed by classification. In
contrast our proposed method combines the feature
selection and classification into a single approach.

3 APPROACH OVERVIEW

Figure 3 shows an overview of the approach for training
and testing. Initially, 2D corners are detected in three
orthogonal planes of the video sequence (z,y), (z,t) and
(y,t). There can be over 1,500 corners per frame, present-
ing an over complete set of features with large amounts
of redundancy and noise. Each corner is encoded as a
three digit number denoting the spatio-temporal plane
in which it was detected, the scale at which it was
detected and it’s orientation. These corners are then used
within an iterative hierarchical grouping process to form
descriptive compound features. Each corner is grouped
within a cuboid based neighbourhood. A set of grouped
corners is called a Transaction and these are collected to
form a Transaction database. This database is then mined
with the purpose of finding the most frequently occur-
ring patterns. These patterns are descriptive, distinctive
sets of corners and are called frequent itemsets. The
mined frequent itemsets then become the basic features
for the next level of mining. These compound corners
are then grouped within an enlarged spatio-temporal
neighbourhood to form a new Transaction database on
which data mining (search for frequently occurring sub-
strings) can again be performed. The process is iterated
with the final stage Frequent Itemsets becoming the
class feature model. For classification of unseen data, the
process is identical apart from the final iterative loop
where compound features are compared to the model
learnt in the training phase. A voting mechanism is used
to score detected Itemsets against learnt/mined models.
Finally, as the Frequent Itemset encoding contains infor-
mation of every constituent corner location, a pixel based
likelihood image for each action can be accumulated,
allowing localisation to be performed.
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4 DATA MINING

Data mining allows large amounts of data to be pro-
cessed to identify any reoccurring patterns within the
data in a computationally efficient manner. One mining
algorithm is Association rule [33] mining. This was orig-
inally developed for supermarkets to analyse shopping
bought by customers, with the aim of finding regularity
in the shopping behaviour of those customers. The aim
was to find association rules within millions of shopping
Transactions. An association rule, A, is a relationship of
the form {A, B} = C, where A, B and C are sets of
items. A and B are the antecedent and C' the conse-
quence. An example of the rule might be, customers who
purchase items A and B are very likely to purchase items
C at the same time. The belief in each rule is measured
by a support and a confidence value.

To process the Transaction association rules,
Agrawal [30] developed the APriori algorithm. It
can be formulated in the following way, if I = {i1,...,4,}
is a complete set of p discrete items then 27 subsets
can be constructed using the items. Formally, these
subsets are the elements of the Power Set of I, P(I)
with cardinality |P(I)] = 2P and each set T € P(I)
is known as an itemset. However, in any particular
application, only a limited number of itemsets Tj,
known as Transactions, will be observed. The list of
observed Transactions form a Transaction database,
D = {Ty,...,T,}. The purpose of the Apriori algorithm
is to search this database and determine the most
frequently occurring itemsets.

As a specific example, consider the set of items I =
{a,b,c,d,e}. There are a possible |P(I)] = 2° itemsets
but in a specific application, only some of these will be
observed. For example, only five itemsets might occur
in practice, yielding the following Transaction database,
D = {{a,bc},{a,b,d, e}, {a,b,e}, {a,c},{a,b,ec d e}}
where |D| =5

Note that Transactions are itemsets and can be of
varying size. The Apriori algorithm is a generative al-
gorithm that uses a breadth first, bottom-up strategy to
explore itemsets of increasing size, starting from single
item itemsets and increasing the itemset size by one at
each level of the search tree. It evaluates the frequency of
occurrence of each generated subset using the observed
Transaction database but retains only those itemsets
whose frequency exceeds some user specified minimum
frequency threshold. The Apriori algorithm exploits the
heuristic that if an itemset does not exceed the minimum
frequency threshold, then none of its descendants (super-
sets) at the higher levels of the tree can do so and hence
these larger size itemsets need never be generated. This
heuristic allows the tree to be pruned to reduce the
search space and makes the algorithm efficient.

The frequency of an itemset is related to the support
and confidence for an association rule, A. An association
rule of the form A = B is evaluated by looking at the
relative frequency of its antecedent and consequent parts

i.e. the itemsets A and B. The support for an itemset
measures its statistical significance i.e. the probability
that a Transaction contains the itemset. For A, this is
calculated as the size of the set of all T, such that T
is an element of D and A is a subset of T, normalised
by the size of D. Using set builder notation, this can be
formalised as

{T|TeD,ACT}|
D]
The support of the rule A = B is therefore
{T | T €D,(AUB) C T}
Dl

and measures the statistical significance of the rule. The
confidence of a rule is then calculated as

sup(AUB) |{T|T € D,(AUB)CT}|

sup(A) = | eER—-1[0,1) (1)

sup(A = B) =

@

The support for the rule is the probability of the joint
occurrence of A and B i.e. P(A, B) while confidence is
the conditional probability P(B|A).

For example, if we consider the association rule
{a,b} = c in the example Transaction database D given
above, then the support of the itemset {a, b} is 0.8 i.e.
four occurrences of {a,b} in five Transactions, while
the confidence of the rule is 0.5 i.e. two occurrences of
{a,b, c} in the four Transactions that contain {a, b}.

In action recognition, we are interested not solely in
the frequency of feature configurations but additionally
require them to be discriminatory. To achieve this, the
algorithm is run on datasets comprising of both positive
and negative examples. The Transaction vectors of all
examples are appended with an action label, «, that
identifies the class that it belongs to. The results of data
mining then include rules of the form {4, B} = « and
an estimate of P(a|A, B) is given by the confidence
of the rule. As the Transaction database contains both
positive and negative training examples P(«a|A, B) will
be large only if {A, B} occurs frequently in the positive
examples but infrequently in the negative examples. If
{A, B} occurs frequently in both positive and negative
examples i.e. several classes, then P(a|A, B) will remain
small as the denominator in the conditional probability
will be large.

Ideally all generated association rules would be main-
tained and the confidence would be used as a measure of
discrimination to other action classes. However, due to
the sheer number of rules this would be computationally
infeasible, therefore both support and confidence are
used to filter generated rules. A single support value
is used throughout all the stages of mining and is
determined as the lowest value that is computationally
feasible at the initial level. During mining, only associ-
ation rules A that pass the minimum support criteria
Teupp are retained. Each generated association rule, A
that contains a class label is considered to be a distinctive
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feature of the class if its confidence value is above a user
specified threshold

conf(A = a) > Teons 4)

It is therefore added to a list called the Frequent Mined
Configuration vector for that class, M (a) = {A1,...,An}
for the N highest confidence association rules. This pro-
cess is used to mine sets of grouped features in [ levels of
a hierarchy providing M!(a). T,y is set to the reciprocal
of the number of classes, as this has proven to deliver
balanced transaction databases in our experiments.

5 FEATURES

In our work we use dense 2D Harris corners [34].
Laptev et al [35] proposed 3D corners as simple features
in (z,y,t). However, Laptev’s 3D corners are sparse,
so instead for our work, we detect 2D corners inde-
pendently in each of 3 orthogonal planes of the video
volume i.e. the gradient interest points are found in-
dependently in (z,y), (z,t) and (y,t). This provides
information on spatial and temporal image changes but
results in a much denser representation than full 3D
Harris corners [35], [2]. Interest points are extracted at
multiple scales. If i indicates scale then we use search
windows of size o; = 3x 2!, with i = 1,...5 viz 3x 3,6 x
6,12 x 12,24 x 24 and 48 x 48. This range is sufficient for
video sizes up to 640x480 pixels. For larger image sizes
further scales could be easily incorporated. In practice,
rather than use larger size scanning windows, we create
image pyramids by successive 2 x 2 block averaging of
a base image and then use a fixed 3 x 3 window to find
interest points at each level. Figure 4 shows an example
of corner detections on three frames taken from various
test datasets. The number of detected corners varies
depending on the scene. Figure 4(a) from the simpler
KTH dataset with a uniform background shows few de-
tections outside the action itself, while Figure 4(b) from
the Multi-KTH dataset has a large number of corners
(1,500 per window) on the cluttered background. The
Multi-KTH data involves a moving camera which often
results in (x,t) and (y,t) corners firing on background
clutter. The same also occurs on the Hollywood dataset in
Figure 4(c). Also seen in this figure, are a large number of
corners firing in (x,y) due to compression artefacts from
MPEG encoding. This large number of corners would
be unsuitable for many learning methods used in action
recognition. However, the hierarchical neighbourhood
grouping and data mining is capable of handling these
extremely large features sets.

To characterise the interest points, the dominant orien-
tation of the corners is also recorded. This is quantised
into k discrete orientations. In our experiments k£ = 8,
therefore the orientation is quantised into bins of size
17 radians aligned with the points of a compass. Each
detected interest point is represented by a 3 digit string
encoding [AScale, Channel, Orientation], with the first
digit representing the difference in the scale between the

scale at which the corner was detected and the scale of
the reference point (see Sec 6) Scale = {1,...,5}. The
second digit indicating the video plane or channel that
the interest point was detected in Channel = {1,...,3}
with 1 = (z,y), 2 = (z,t) and 3 = (y,t) and finally
the third digit showing the dominant orientation of
the corner quantised into one of 8 equal sized bins
Orientation = {1,...,8}. Figure 5 gives a visual example
of the encoding.

(b)

(@)
X X X

Orientation
Channel

Ascale

Fig. 5. (a) the three parts that make up a local feature
descriptor. (b) this descriptor, is at scale 2 (6x6 patch),
dimension 1 (x,y) and corner orientation 5

By detecting and encoding corners in the 3 channels
of space and time, we assume a constant relationship
between them. This assumption remains valid provided
the relationship is preserved. This can easily be archived
by ensuring all videos are resampled to a reasonably
consistent resolution and frame rate. Exact spatial resam-
pling is undesirable as aspect ratios vary and should be
preserved.

6 RECOGNITION FRAMEWORK

In many object and action recognition approaches it
has been shown that spatial information can improve
accuracy [10], [2]. Individual 2D corners alone have lit-
tle discriminatory power but consistent spatio-temporal
structures formed by grouping several 2D corners are
very powerful both for recognition and for rejecting
features arising from background clutter.

There are a number of ways to represent the struc-
tures in the neighbourhood of a given corner. Sivic [17]
simply uses a clustering approach and records the j
corners closest to a central corner, without making the
spatial relationships explicit. In contrast, Quack et al [10]
represent the spatial layout of high level SIFT features
by quantising the space around a feature using a 2D
grid. Each feature is assigned to a cell of the grid.
A similar approach is adopted in our method but we
use a spatio-temporal hierarchy. The low levels of the
hierarchy correspond to structures with a small spatio
temporal extent while higher levels associate corners and
corner structures over larger scales. At the final stage,
the relative location of constituent compound features is
encoded in a way that assists scale invariant recognition.
Compound features found at higher levels naturally
describe more complex structures but at these higher
levels there are fewer structures detected. The use of
hierarchy both speeds up the classification and leads to
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Fig. 4. 2D Harris Corner Detections on Frames, (a) Running from the KTH dataset [1], (b) Boxing and Handclapping
from Multi-KTH Dataset [15], (c) HugPerson from the Hollywood Dataset [2],

increased accuracy, in a similar way to that of a cascaded
classifier [36].

6.1 Neighbourhood Encoding

A regular 3 x 3 x 3 grid, that yields 27 equally sized
cells, is used to establish a neighbourhood for encoding
the relative position of corners. The grouping is applied
at several scales or levels in a hierarchy. At level [ of the
hierarchy, a cell of the neighbourhood grid extends over
wh pixels and frames. At the lowest level, [ = 1, the cell
size w! is set to one. At higher levels, cell size is given
by w! = 2 x w!~1. The hierarchy has up to L levels. In
the experiments of Section 7, L < 5. For [ = 1, the grid
is centred at each 2D corner and other corners that fall
within the grid are labelled with a number that denotes
the cell that encloses the corner. This provides tolerance
to the exact layout of features during encoding. The fact
that mining is seeking reoccurring feature combinations,
mitigates some of the boundary issues associated with
such coarse quantisation.

@ A I

13216

S
= Tl‘a;
. .
A a

ii t-w
08116

Fig. 6. (a) The grid centred on a corner shown by a cross.
Four other corners are found within the neighbourhood
defined by the grid. (b)The spatial and temporal encoding
of each of the five corners in the grid. (c) The Transaction
vector T formed by concatenating the codes for all 5
corners

(c)
| T=1{00221,08116,13216,17116,20111} |

Figure 6(a) shows four corners that have been identi-
fied in the region around a central corner that is marked
with a red cross. Each corner has it’s individual three
digit code based on it’s Ascale!, orientation and direction

1. AScale is taken as the absolute difference between the scale of
the central corner and the corner being encoded.

e.g. the centre corner’s attributes are given as 216. This
code is then pre-appended with an integer that denotes
the grid cell where it occurs. For the central corner
the cell number is 13 and hence the centre feature is
represented by the string 13216. This string is known
in data mining as an item and encoding all the corners
in the grid yields the 5 items shown in Figure 6(b).
The items are then concatenated into a larger 1D vector,
known within the mining community as a Transaction
vector T. Hence, each corner generates a Transaction
vector and the i*" corner at the 1%¢ level of hierarchy
will produce a Transaction vector denoted by 7}'. Finally,
for the purposes of the training stage, each Transaction
vector is appended with the label of the associated action
class, a. Hence, the Transaction vector from Figure 6
is {00221,08116,13216,17116,20111, a}. This encoding
process is then repeated for all 2D corners detected in the
video sequence to produce D!, the transaction database
for the first stage of mining.

6.2 Learning

The mining process is applied in a hierarchical manner
to discover, for each action, «, at each level, [, a set
of discriminative frequent mined corner configurations,
M'(a). M'(a) is a set of itemsets or association rules,
A, derived from the Transaction database found at level
[ that frequently occur in the desired action class but
are uncommon in other action classes. The elements
of M!(«) identify distinctive configurations and these
configurations form an input to the next higher level of
hierarchical grouping.

At the second level and above, the features on which
mining is performed are no longer simple corners, but
compound groupings of corners from the last level of
mining. The region encoding therefore only needs to
capture the spatio temporal relationship of compound
features at the last level, as the concept of scale and
orientation no longer exist. D'>>L = {T1}”' where
the transaction vector 7! is built in terms of the A'~!
symbols pre-appended with the integer that denotes
the grid cell where it occurs as for [ =1, e.g. D'<!<l' =
AT A ALY AT Y where
re € {0,...,26} is the grid cell in which a compound
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features fires and A'~! is the presence of a compound
feature found at the previous level of the hierarchy.

6.2.1 Scale Invariant Grouping

At the final level of the hierarchy | = L, the grouping is
changed from a 3 x 3 x 3 grid to a 2 x 2 x 3 grid centred
on the feature (see figure 8). This grid is divided into
12 equal cuboids in the z,y,t domain where z, y radiate
from the centre of the neighbourhood out to the image
edge, and t extends to successive and preceding frames
based on w;. This discards the spatial distance between
features and simply encodes the relative displacement
of features. It assists recognition with invariance to scale
and is possible as the features that fire at the higher
levels are very sparse and therefore result in a relatively
small transaction size despite encoding all features. At
previous levels of the hierarchy such an approach be-
comes infeasible as the number of features in the xz,y
plane alone are prohibitively large.

(a) (b) (c)

Fig. 7. The hierarchical construction of compound fea-
tures, (a) shows the initial Harris corners, (b) shows three
compound features made up of the corners from (a). (c)
shows a single compound feature representing all the
corners

Figure 7 illustrates how the initial 2D corners are
formed into compound features as the level of hierarchy
increases. Figure 7(a) shows some initial 2D detected
corner features. Using a grid whose cell size is 1 and
which extends over 3x3x3 pixel/frames around a corner
point, a set of Transaction vectors is generated i.e. in
the example there are 9 corners and hence 9 Transaction
vectors D' = {T'}?_,. However, following mining, a set
of frequent mined corner configuration corresponding
to association rules whose support passes the threshold
is generated. In this example the number of rules dis-
covered is 3 so M*(a) = {A], AL, AL}. These are shown
in red. At [ = 2, the grouping size is now increased,
wy = wy *2 and for each A}, all other Ajl- that fall within
the local grid are again appended with the grid location
to form a new transaction database D? for the next level
of mining. Following mining on D?, M?(a) = {A}} ie. a
single compound feature is constructed indicated as the
green hierarchical constellation of corners in Figure 7c.

6.3 Recognition

Once the training has occurred, the frequently reoccur-
ring distinctive and descriptive compound features for
each class, a are produced, M (a) = {M'}L. To classify an
unseen video sequence, it is analysed in a similar fashion

(a_)

g
(=]
()
>

G

024" 0347

—-—— -
A
/
\j
X

[ T={02A",0347 ,a} |
(c)

Fig. 8. Note for illustration, single frame grounding is
shown. The grid is centred upon the feature to encode
and extends to the boundary of the image in x,y and a
single frame either side in t. (a) There are two compound
features found on this frame, these have been prefixed by
their grid location in (b). (c) Shows the concatenation of
the local features into a Transaction vector for this interest
point.

to the approach outlined during learning. The iterative
process of encoding features in terms of M («) symbols
is repeated to form transaction databases, but instead
of mining patterns from D, only patterns that exist in
M () is passed to the next level. The confidence of each
transaction in M («) are used to weight the matches, as a
high confidence would indicate that the Transaction, T is
distinctive compared to other classes. The use of the con-
fidence ensures that if the transaction is matched with
several classes, the confidence will provide a measure of
the discrimination between those classes. The response,
R of the classifier is given by

1 vT;€D
R = D@ 2 ") O
where

The model score can then be used in several ways to
make a decision about the action class of the video
sequence. We have chosen to accumulate responses for
each frame of the sequence, assign an action label ac-
cording to the class that maximises the response for
that frame and then take a majority decision over all
frames to decide the action label for the complete video
sequence. In the unlikely event that no matches occur
and the model score is zero, the video would be classed
as not containing any action.

6.4 Localisation

For video sequences where a single action occurs, the
classification process outlined above is sufficient. How-
ever, if multiple actions occur simultaneously then lo-
calisation of each action will be required. To achieve
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this we use the frequently reoccurring compound feature
for each class, M(a) to generate a confidence-based
likelihood map for all locations in the sequence’s space-
time volume. Each feature that fires within an image is
encoded at a fixed scale and as such, knows the area
of influence the video had upon it. Each feature which
is within M(«a) can therefore vote for the area of the
image in which the action is occurring. The likelihood
response for the entire image is maintained in the form of
an accumulator array which is initially set to zero. When
a feature fires, the response value of equation 5 is added
to the appropriate region of the accumulator around the
position of the central feature. Figure 16(a) shows the
likelihood image for a typical example. A threshold can
then be applied on a pixel by pixel basis to find the
most likely locations for a given action. This is shown
in Figure 15 for frames from the Multi-KTH dataset with
the most likely positions of the actions colour coded.
It should be noted that the localisation highlights the
action and not the person performing the action. Hence,
in these examples, the activity is centred on indicative
motion (i.e. hands and legs) rather than the person.

7 EXPERIMENTAL RESULTS

Four different datasets were used to test the approach
proposed within this paper. The focus of each dataset is
different, to illustrate the generalisation of the method.
The datasets used include the well known and popular
KTH dataset [1], to provide a comparison with the other
techniques reported in the literature. The simultaneous
multi-action Multi-KTH dataset [15], using the same
actions and training as the KTH dataset, demonstrates
detection of multiple actions in noisy scenes with back-
ground clutter and a moving camera. Finally, two natural
real-world datasets are used, Hollywood [2] and Holly-
wood? [14], both are made up of clips from movie films.
On all datasets our approach outperforms competing
state-of-the-art approaches reported in the literature.
The KTH dataset contains 6 different actions; boxing,
hand-waving, hand-clapping, jogging, running and walking,
examples of each action are shown in Figure 9. The state-

(b) handclapping (c) handwaving

(e) running

(d) jogging (f) walking

Fig. 9. Examples from the KTH dataset

of-the-art recognition accuracy on the KTH dataset are
generally within the range of 86% to 95% and therefore
there is little room for improvement. To provide an
additional challenge, the Multi-KTH dataset [15] was
proposed. It consists of a single 753 frame long se-
quence where multiple people perform the KTH actions
simultaneously. To increase difficulty, there are large
changes in scale, camera motions and a non uniform
background. Some frames from the sequence are shown
in Figure 10. The third action recognition dataset is

Fig. 10. Examples from the Multi-KTH dataset

the Hollywood dataset of Laptev [2]. It consists of 8
actions; AnswerPhone, GetOutCar, HandShake, HugPerson,
Kiss, SitDown, SitUp, StandUp, with clips taken from
Hollywood films, see Figure 11. The fourth dataset is

(f) SitDown

I

W
(g) SitUp

(h) StandUp
Fig. 11. Examples from the Hollywood dataset [2]

the Hollywood2 dataset [14]. It builds upon [14] and
consists of 12 action classes; AnswerPhone, DriveCar, Eat,
FightPerson, GetOutCar, HandShake, HugPerson, Kiss, Run,
SitDown, SitUp, StandUp with around 600,000 frames or
7 hours of video sequences split evenly between training
and test datasets.

7.1 Performance Measures

For the KTH dataset, the data for training and testing
can be partitioned in two ways. The partition originally
proposed by the dataset’s creator Schiildt [1] is used to
allow direct comparison of results. There are a total of 25
people performing each action 4 times, giving 599 video
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sequences (1 sequence is corrupt). Each video contains 4
instances of the action totalling 2396 unique actions. We
present results using training and testing data split as
suggested by Schiildt, with 8 people for training, and
8 people testing. However, many authors ignore this
partitioning and instead opt for an easier leave-one-out
cross validation. While this is a far simpler test, we also
report results in this fashion to allow comparison with
other methods tested in this way.

For the Multi-KTH, accuracy of the localisation is
used as the measure of performance. Each action has a
manually groundtruthed rectangular bounding box and
the action localisation is deemed correct if the resultant
dominant pixel label within the bounding box matches
the ground truth. Visual examples of the localisation are
shown in Figure 15 and Figure 16.

The clean test and training partitions proposed by
Laptev [2] were used for the Hollywood dataset to al-
low direct comparison to their published results. There
are 219 training video sequences spread over the 8
actions, and 211 test video sequences. For the Hollywood?2
dataset, the clean train and test partitions proposed
by Marszalek [14] were used. There are a total of 810
training videos spread over 12 action classes, with 884
test sequences. An important point to note is that for all
datasets, none of the movies used in training are used in
the test sequences, meaning the classifier’s aren’t trained
on the film but on the actual human action. Each of the
datasets offers different challenges therefore they will
be examined in turn, beginning with the popular KTH
dataset.

7.2 KTH dataset Action Classification

While the KTH dataset is generally seen as simplis-
tic due to the near uniform background and artificial
actions performed, it is useful to compare with other
state-of-the-art methods. Figure 12 shows the resulting
average precision confusion matrix for the six actions
of the KTH data using for the Schiildt training / test
partition [1]. There is most confusion occurring between

Clap

Wave

Walk

Walk

box  clap

wave jog Run

Fig. 12. Confusion matrix of human action recognition
results for KTH dataset using training/test partition pro-
posed by [1]

jogging and running and between handClapping and hand-
Waving, which are common confusions reported for com-
peting techniques. Table 1 shows the average precision
compared to other state-of-the-art approaches for the
Schiildt training / test partition.

TABLE 1
Average precision on KTH action recognition Dataset
using training/test partition proposed by [1]

Method Average

Schiildt training/test partitions Precision
Wang et al [8] Harris3D + HOF 92.1%
Laptev et al [2] HOG + HOF 91.8%
Klaser et al [37] HOG3D 91.4%
Nowozin et al [38] Subseq Boost SVM 87.04%
Schiildt et al [1] SVM Split 71.71%
Ke et al [24] Vol Boost 62.97%
Fixed grid 88.5%
Non-Hierarchical Mined, L = 1 89.8%
Hierarchical Mined, L = 3 94.50%

The table shows our Hierarchical Mined Approach
technique has higher classification accuracy than all
other state-of-the-art methods. This includes the various
feature descriptor combinations of HOF and HOG from
Wang [8] and Laptev [2] and Subseq Boost the boosted
SVM classifier by Nowozin [38].

The use of a hierarchical approach provides a 5%
increase over no hierarchy and provides a good increase
in performance over previously published results. Re-
sults within Table 2 use the simpler leave-one-out ap-
proach. This shows higher overall average performance,
however, our approach still out-performs all other ap-
proaches and gives a comparison of the complexity of
leave-one-out cross validation versus the training/test
split of [1].

TABLE 2
Average precision on KTH action recognition Dataset
using leave-one-out cross validation

Method Average
leave-one-out test/train Precision
Kim et al [39] CCA 95%

Zhang et al [40] BEL 94.33%

Liu and Shah [41] Cuboids 94.15%
Han et al citeHanICCV09 MKGPC 94.1%
Uemura et al [15] Motion Comp Feats 93.7%
Bregonzio ef al [42] 2D Gabor filter 93.2%
Yang et al [43] Motion Edges 87.3%
Wong and Cipolla [44] Subspace SVM | 86.60%
Niebles et al [45] pLSA model 81.50%
Dollar et al [20] Spat-Temp 81.20%
Fixed grid 90.5%
Non-Hierarchical Mined, L = 1 91.7%
Hierarchical Mined, L = 3 95.7%

Table 3 shows the average precision of performance
over five stages of the Hierarchical grouping for the
Schiildt partition. Initially as the stages increase and the
compound features become more complex, the accuracy
increases. This is because the compound features become
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TABLE 3
Average Precision over the hierarchical stages on a per
action basis on KTH dataset

Hierarchy stage

Action L=1|L=2|L=3|L=4|L=5
Boxing 93% 93% 100% [ 91% 80%
HandClapping 84% 90% 94% 82% 64%
HandWaving 92% 91% 99% 90% 55%
Jogging 87% | 91% | 91% | 91% | 81%
Running 87% 88% 89% 86% 74%
Walking 96% 96% 94% 94% 84%
Average
Precision 89.8% | 91.5% | 94.5% | 89.0% | 73%

more complex at each level of the hierarchy and are
therefore able to differentiate more reliably between
different action classes. L = 1 is the non-hierarchical
approach where a single grouping stage is performed
using the 2 x 2 x 3 encoding. L = 2 is a two stage
grouping where 3 x 3 x 3 is used initially followed by
2x2x 3. Three further stages of grouping are shown with
L = 3 providing the optimum performance. However,
by the fourth and fifth stages there are too few features
to effectively classify, causing an overall reduction in
accuracy. However stage 4’s performance is still greater
than that of all other methods in Table 1.

Figure 13 shows two further confusion matrices for
the KTH dataset. Figure 13(a) shows the results for a
single stage approach using a fixed size grid size of
4 x 4 x 2 where w = 15. It has an average precision
of 88.5%. Figure 13(b) shows results for a single stage,
scale invariant approach (L = 1) which uses the 2x2x 3
encoding to capture the relative displacement from the
centre feature as illustrated in Figure 8, see section 6.2.1
for associated discussion of scale invariance.

The scale invariant approach (Figure 13(b)) has an
average precision of 89.8%, an increase of just over 1%
compared to the fixed grid. This increase is due to the
additional invariance to scale gained by the relative en-
coding and the addition of temporally adjacent features.
This small increment in performance is largely due to the
ceiling performance of the dataset having been reached.

7.3 Computation Cost

Important points that are often neglected within action
recognition, are speed and computational cost of the
methods proposed. One of the advantages of using a
data mining technique, is the speed of learning patterns
when compared to other machine learning approaches
such as Boosting or SVMs. In addition, simple 2D corner
detection has a relatively low computational cost. The
spatial neighbourhood grouping is fast during training
as it has limited neighbourhoods in which to encode
features. At each level of the hierarchy, the features are
grouped into more complex and discriminative features.
By using a hierarchical approach, a lower overall compu-
tational cost can be achieved compared to using a single
level of feature with equivalent complexity. This is due

to the removal of unused compound features at each
level of the hierarchy, resulting in less computational
overhead. Table 4 shows the average frame rate for the
stages of training for the KTH dataset. It indicates the
real-time nature of the training process, despite being an
unoptimised C++ implementation running on a standard
single core desktop PC. It also shows that the number
of features are greatly reduced by the successive stages
of mining and it is this that allows the overall classifier
speed to be maintained despite the additional levels of
complexity. It should be noted that although the number
of features reduces drastically at each level of the hierar-
chy, the encoding at all previous levels still needs to be
performed. Hence the overall reduction in speed at each
level. Table 5 shows the average runtime frame rate at
testing for the four different datasets used. The table also
shows that there is a large variation in frame rate over
the datasets. The high frame rate within the KTH dataset
is due to the simple uniform background reducing the
number of features that are detected. In contrast, the data
for Hollywood, Hollywood2 and Multi-KTH indicate more
realistic speeds for a cluttered background and large
images where there are a greater number of features to
be encoded and grouped.

TABLE 4
A break down of the average frame per second of the
successive training stages on the KTH dataset

St Frames per | Ave features
age
second per frame
Encoding 1=1 35fps 1500
Mining 1=1 640fps
Encoding 1=2 28fps 300
Mining 1=2 21fps
Encoding 1=3 18fps 210
Mining 1=3 10fps
Encoding 1=4 8fps 30
Mining 1=4 8fps
Encoding 1=5 7fps 25
Mining 1=5 2fps
TABLE 5
The average frame rate at runtime for the four datasets
Dataset Level | Frames per second | Resolution
KTH 3 24fps 160x120
Multi-KTH 3 4fps 320x240
Hollywood 2 10fps 320x240
Hollywood?2 2 7fps 320x240

7.4 Multi-KTH dataset

The Multi-KTH dataset is a more challenging version
of the KTH dataset. It has the same 6 actions and
training video sequences, but the test sequence consists
of multiple simultaneous actions, with significant camera
motion and scale changes, and a more cluttered and re-
alistic background. Table 6 shows how the performance
increases as the number of hierarchical stages increases,
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Clap

Wave

Jog

Run

Walk

box clap Walk

(a) Fixed Grid

wave jog run

Fig. 13. Confusion Matrix of Precision for KTH dataset

and we see a similar peak performance at stage 3 as was
seen in Table 3

TABLE 6
Average Precision over the stages on Multi-KTH dataset

. Hierarchy stage
Action L:l[L:Q[L:y3[gL:4[L:5
Boxing 76% 76% 75% 72% 34%
HandClapping 75% 65% 69% 70% 45%
HandWaving 84% 80% 77% 76% 61%
Jogging 50% | 61% | 85% | 51% | 24%
Walking 59% 61% 70% 60% 38%
Average
Precision 68.8% | 68.6% | 75.2% | 65.8% | 40.4%
Average
Recall 64.3% | 702% | 74.3% | 60.1% | 29.3%

The table shows the increase in performance from a
L =1 classifier with no hierarchical compound features,
to a peak performance using a three stage hierarchical
classifier of 75.2%. By the fourth and fifth stages, the
performance starts to decrease, this is due to too few
compound features firing. Table 7 gives the results over

ROC Curve for Multi-kTH Dataset, using Level 3 Compound features
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Fig. 14. ROC Curve for the Level 3 compound features
on the MultiKTH Dataset

the 5 actions compared to previously published results
from Uemura. [15].

Our stage 3 (L3) hierarchy approach has a significant
increase in accuracy. The use of the hierarchy allows for

Walk

box clap wave jog run

(b) Scale Invariant

TABLE 7
Average precision of actions on Multi-KTH action
recognition Dataset

Clap | Wave | Box | Jog | Walk Ave
Uemura [15] || 76% | 81% | 58% | 51% | 61% || 65.4%
L=3 69% | 77% | 75% | 85% | 70% || 75.2%

complex compound corner features to be mined, these
are then more invariant to the cluttered background and
motion of the video sequence especially with dynamic
actions such as walking and jogging. This ensures a higher
true positive rate, while reducing the false positive detec-
tions on the background. Figure 14 shows the ROC curve
for the Level 3 Compound Features. As can be seen, the
results of Table 7 are achieved with a false positive rate
(FPR) of <9%. Table 8 shows the effect on the average
frame per second as the number of hierarchical stages
increases. Figure 15 shows four example frames of action

TABLE 8
Average Frame per second over the hierarchical stages
on Multi-KTH

Hierarchy
stage
=1

Ave fps

0.03 fps
1 fps
4 fps
15 fps
16 fps

SISISESAS
[TINTT
T WD

localisation.

It can be seen that the localisation is generally centred
on the person’s upper body and hands for the static
actions (boxing, handClapping and handWaving) and is
centred around the legs for the dynamic actions. This
is because the legs contain the descriptive features for
the dynamic actions, while the localisation of the hands
and body is important for the static actions. These results
are impressive as no ground truth training data was
provided, only the class labels of the video. In compar-
ison, the approach by Uemura required ground truth
positions during training. Figure 15(b) is expanded to
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Fig. 15. Localisation results from the Multi-KTH dataset,
red - handclapping, blue - boxing, yellow - running pink -
walking, green - handwaving

(a) Boxing

(b) HandClapping

(d) Resulting Frame

(¢) Running

Fig. 16. Localisation results from the Multi-KTH dataset

show the separate action likelihoods in Figure 16, using
a common normalized scale. Figure 16(d) is produced by
thresholding each likelihood image and taking a pixel by
pixel maximum likelihood decision of the action within
that area. The threshold is the same as that used for Table
7 and roughly translates to a 9% FPR.

The Multi-KTH sequence uses the class models trained
on the KTH dataset. Comparing the overall average
precision with the original KTH, an accuracy decrease of
around 20%, demonstrates the more challenging nature
of the Multi-KTH data.

7.5 Hollywood dataset

Training was performed with the “clean, manual”
dataset of 219 videos and performance was evaluated
using the “clean” test dataset of 217 videos. This is
the same as reported by Laptev in [2] to allow for a

direct comparison of results. Table 9 presents the average

TABLE 9
Average precision for the Hollywood Test Dataset
Action L=1] L=2|L=3]|L=4]L=5
AnswerPhone 3.1% 25.7% 47.0% 21.5% 2%
GetOutCar 45% || 385% | 47.0% | 384% | 32%
HandShake 23% || 45.6% | 50.0% | 38.0% 5%
HugPerson 8.6% || 42.8% | 42.1% | 12.3% 0%
Kiss 433% || 72.5% | 69.4% | 56.2% | 15%
SitDown 28.6% || 84.6% | 46.2% | 25.8% 0%
SitUp 102% || 29.4% | 44.0% | 34.4% 0%
StandUp 55% || 41.6% | 705% | 61.1% | 21%
[ Average [ 13.2% || 53.5% | 52.0% | 360% | 9% |

accuracy for the 8 actions for a two, three, four and
five stage hierarchy, as well as a single stage (non-
hierarchical approach L = 1). The values are relatively
low compared to the KTH dataset, however, as Figure 17
shows with examples from the SitUp class, there are dra-
matic illumination, people, and camera angle variations
in the data. There is little difference between the stage

Fig. 17. (a,b) SitUp Sequence 1, (c,d) SitUp Sequence 2

2 and stage 3 hierarchical grouping. However, by the
fourth and fifth stages the complexity of the compound
features increases, meaning they fire less often. This
reduces the feature set and less features mean less ability
to discriminate between classes therefore reducing the
overall accuracy of the recognition. This trend is similar
to the previous two datasets. However, the peak per-
formance is at a lower level than the previous datasets
due to a greater variability in actions. To illustrate the
reduction in the number of features firing at higher
stages, Figure 18 shows the different stages of compound
features on a single example frame of a handshake video,
and Table 10 gives the actual number of features per
frame at each stage. Notice how the features localise
the hands at each stage. Also note how features have
been selected on the head region. In many training
examples of handshake the hands cannot be seen in the
frame. Mining has therefore selected additional feature
indicative of this class such as the subtle motion of a
head nod that accompanies the handshake.
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Input Image

Stg1 Stg 2

Stg 3 Stg 4

Fig. 18. Detected compound features at each stage for a
handshake,

TABLE 10
Average Number of features per frame at each stage

Stage Num of Features

=1 1214

=2 1144

=3 92
l=L=5 61

7.6 Choosing Compound Feature Complexity

Table 9 simply computes average classifier performance
for each level of the hierarchy. However, although [ = 2
provides the highest average recognition rate for this
dataset, some classes are more accurately classified at
other levels of the hierarchy. This is to be expected, as
different actions exhibit varying levels of complexity.
Simply choosing the highest accuracy for each row of
table 9 would amount to optimising our approach over
the test data which is poor scientific practice. Ideally
training, test and validation sets would be used but
repartitioning of the data would make any compari-
son to other techniques meaningless. Instead we opt
to evaluate accuracy of the hierarchy at re-classifying
the training data in the hope that peak performance on
training will generalise to peak performance on unseen
test data.

The classifier performance was computed on the train-
ing data, over the five levels, these results are shown
in Table 11. For each action, the level that produced the
highest precision was noted and is indicated by the bold
type face. Using the peak performance on training to se-
lect the appropriate level of the hierarchy specific to each
action provides the average precision shown in Table 12.
While this approach does not provide optimal results
that would be gained from optimising over the test set,
it provides a fairer approach and still produces around a
3% increase to give an average precision of 56.8%, which
compares very favourably to the previously published

results of 38% and 47.5%.

TABLE 11
Average precision for the Hollywood Training Dataset,
numbers in bold indicate highest AP for action

Action L=1|L=2|L=3|L=4|L=5
AnswerPhone 12% 63% 73% 15% 4%
GetOutCar 41% 42% 58% 31% 8%
HandShake 25% 54% 31% 12% 1%
HugPerson 48% 74% 44% 40% 4%
Kiss 31% 62% 64% 50% 34%
SitDown 28% 74% 34% 14% 10%
SitUp 8% 74% 83% 47% 14%
StandUp 25% 41% 72% 51% 45%

7.7 Mined Transaction size

The combination of individual features is one of the main
novelties of the approach, therefore, further analysis
of it’s actual importance is performed. To present the
importance of the length of the mined association rule
vectors, the Hollywood dataset was tested again using a
stage 1, 2 and 3 neighbourhood grouping, but with the
maximum length of the association rule vector limited.
Table 13 shows the results as the maximum permissible
length of items within the mined Transaction vectors is
increased and Figure 19 shows a visual representation of
these results. The increase in accuracy as the minimum

TABLE 13
Average precision of Hollywood dataset, increasing the
maximum number of items within the of Transaction

vector.
Max No. 2 3 4 5 6 7
of Items
L1 Accuracy 0% 1% 12.1% | 13.2% 4% 1%
L2 Accuracy 0% 9.6% 21% 53.5% | 50.3% | 15%
L3 Accuracy 2.1% 4.0% | 31.3% 52% 24% 17%
Min fps (s) 0.0001 | 0.002 0.2 35 45 30
Max fps (s) 0.001 0.1 2 28 28.5 64
60
Level 1
m— | el 2
50k === evel 3
40
§ 30
20-
10
e
0 -—-—-—_-’—- L L L

1 2 3 4 5 6 7
Max Nurm of Transaction ltems

Fig. 19. Hollywood Accuracy as maximum number of
Transaction items increases

item size increases, indicates that the greater the size
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TABLE 12
Average precision for the Hollywood Test Dataset, compared with the previously published results.
Action Laptev [2] | Willems [46] | Matikainen [47] | Han [27] Ours
AnswerPhone 32.1% 22.9% 0% 434% 47.0%
GetOutCar 41.5% 19.5% 7.7% 46.8% 47.0%
HandShake 32.3% 20.4% 5.3% 44.1% 45.6%
HugPerson 40.6% 17.9% 0% 46.9% 42 8%
Kiss 53.3% 33.8% 71.4% 57.3% 72.5%
SitDown 38.6% 21.8% 4.5% 46.2% 84.6%
SitUp 18.2% 50.2% 11.1% 38.4% 44.0%
StandUp 50.5% 49.8% 69.0% 57.1% 70.5%
[ Average || 384% [  296% | 31.1% [ 475% [ 56.8% |

of the compound feature, the more important they are
within the classifier. This is intuitively reasonable as the
more complex compound features are likely to contain
greater discriminative detail for improved between-class
disambiguation. This is the same principle as the hierar-
chy and it can be seen that at L = 2 (maximum length of
5 and 6), the accuracy is the same as L = 3 (maximum
length 5). The slight improvement for stage 2 is due to
a greater number of association rules exceeding 5 items
in length. This is also the cause of the final reduction
in accuracy, as there are too few association rule vectors
containing six or more items.

7.8 Hollywood2 dataset

The Hollywood?2 dataset [14] extends the ideology of the
Hollywood dataset, with a greater number of actions and
additional scene training data. The video sequence split
for training and test are the same as proposed by Marsza-
lek to allow direct comparison to his results. The results
of the iterative grouping process are shown in Table 14.
Our results use the approach outlined in the previous
Hollywood section, using the semi-optimal hierarchy
stage selection, determined by assessing performance
on the training data. The stage of the hierarchy used
is shown in brackets. The results from Marszalek [14]
and Han [27] use scene and object context enhancement
to improve accuracy. However, our approach is able
to outperform their published results without context.
There is a large variation in the hierarchy level used
for the actions. This is because some of the actions
such as Answerphone or Handshake are quite small, and
therefore need a very complex set of compound features
in order to classify the action over the background noise.
Therefore, Level 3 or 4 in the hierarchy produces the
best results. In contrast, FightPerson and DriveCar use
more global contextual features and therefore they work
with lower level features from level 1. Like us, Wang [8]
used dense sampling to obtain similar performance,
suggesting that sparse feature representations may not
be optimal. However, while the approach by Wang is
computationally expensive, our approach can still pro-
vide real-time operation, with frame rates ranging over
Hollywood?2 video sequences between 5fps and 60fps de-
pending on the complexity of the video i.e. the number
of corners detected and encoded.

The optimal number of grouping stages varies and
generally the more localised and smaller the action,
the higher the stage required to provide good class
discrimination. Once again, by the 4th and 5th stage of
hierarchical grouping, there are too few compound fea-
tures being detected and grouped to provide consistent
accuracy over all actions.

8 CONCLUSION

This paper has presented an efficient solution to the
problem of recognising actions within video sequences.
The use of a mined hierarchical grouping of simple
corners, means that it is fast and able to form complex
discriminative compounds of simple 2D Harris corners.
Data mining allows for the use of an over complete
feature set in order to efficiently learn the sparse complex
compound features. This contrasts with the accepted
view of using a feature detector that is engineered to
be sparse. Four different datasets have been tested in-
cluding the complex Hollywood and Hollywood2 datasets
of film clips. Also the Multi-KTH dataset required mul-
tiple action localisation and the KTH dataset provides
a comparison to other approaches. On all four datasets
our approach out performs all other published works.
Arguably more complex classifier architectures, such
as boosting[32] or Support Vector Machines, could be
combined with the mined features. However, the high
performance of the relatively simple voting mechanism
used within this manuscript demonstrates the strength
of the features identified by mining. Future work will
investigate forming higher levels of the hierarchy and
alternative classification architectures as this is where
further accuracy could be gained.
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TABLE 14

Average precision of Hollywood2 Test Dataset

Action Marszalek [14] | Han [27] | Wang [8] Ours (multistage)
AnswerPhone 13.1% 15.57% -% 40.2%(L=3)
DriveCar 81% 87.01% -Y% 75.0%(L=1)

Eat 30.6% 50.93% -% 51.5%(L=2)
FightPerson 62.5% 73.08% -% 77.1%(L=1)
GetOutCar 8.6% 27.19% -% 45.6%(L=3)
HandShake 19.1% 17.17% -% 28.9%(L=3)
HugPerson 17.0% 27.22% -% 49.4%(L=2)

Kiss 57.6% 42.91% -% 56.6%(L=2)

Run 55.5% 66.94% -% 47.5%(L=3)

SitDown 30.0% 41.61% % 62.0%(L=2)
SitUp 17.8% 7.19% -% 26.8%(L=4)
StandUp 33.5% 48.61% -% 50.7%(L=3)
[ Average | 35.5% [ 4212% | 477% ] 50.9% |
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