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Abstract

We present an algorithm for fusing multi-viewpoint video (MVV) with inertial mea-
surement unit (IMU) sensor data to accurately estimate 3D human pose. A 3-D convo-
lutional neural network is used to learn a pose embedding from volumetric probabilistic
visual hull data (PVH) derived from the MVV frames. We incorporate this model within
a dual stream network integrating pose embeddings derived from MVV and a forward
kinematic solve of the IMU data. A temporal model (LSTM) is incorporated within
both streams prior to their fusion. Hybrid pose inference using these two complementary
data sources is shown to resolve ambiguities within each sensor modality, yielding im-
proved accuracy over prior methods. A further contribution of this work is a new hybrid
MVV dataset (TotalCapture) comprising video, IMU and a skeletal joint ground truth
derived from a commercial motion capture system. The dataset is available online at
http://cvssp.org/data/totalcapture/.

1 Introduction
The ability to record and understand 3-D human pose is vital to a huge range of fields, from
biomechanics, psychology, animation, and computer vision. Human pose estimation aims to
deduce a skeleton from data in terms of 3-D limb location/orientation or a probability map
of their locations. Currently to achieve a highly accurate understanding of the human pose,
commercial marker-based systems such as Vicon [3] or OptiTrack [1] are used.

However, marker-based systems are intrusive and restrict the motions and appearance
of the subjects, and often fail with heavy occlusion or in high illumination. A special suit
augmented with small reflective markers and, many specialist cameras (IR) are necessary,
increasing cost and setup time and restricts the shooting to artificially lit areas. To remove
these constraints there has been significant progress in the vision-based estimation of 3D
human pose. however, a complex human body model is used to constrain the estimates [34] or
depth data [37] is required. Inertial Measurement Units (IMUs) [2, 25] have been introduced
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2 TOTAL CAPTURE: POSE ESTIMATION FUSING VIDEO AND IMU DATA

Image MVV PVH IMU Sensor 3-D Human Pose Result
Figure 1: Our two-stream network fuses IMU data with volumetric (PVH) data derived from
multiple viewpoint video (MVV) to learn an embedding for 3-D joint locations (human pose).

as a compromise, placed on key body parts and used for motion capture, without the concerns
of occlusions and illumination. However, they suffer from drift over even short time periods.

Therefore we propose the fusion of vision and IMUs to estimate the 3-D joint skeleton of
human subjects overcoming the limitations of the drift and lack of positional information in
IMU data and the requirement of learnt complex human models. We show that the comple-
mentary modalities mutually reinforce one another during inference; rotational and occlusion
ambiguities are mitigated by the IMUs whilst global positional drift is mitigated by the video.
Our proposed solution combines alpha foreground mattes from a number of synchronised
wide baseline video cameras to form a probabilistic visual hull (PVH), which is used to train
a 3-D convolutional network to predict joint estimates. These joint estimates are fused with
joint estimates from IMU data within a simple kinematic model, as illustrated in Fig 1. Taking
advantage of the temporal nature of the sequences, Temporal Sequence Prediction (TSP) is
employed on the video and IMU pose estimates to provide contextual frame-wise predictions
using a variant of Recurrent Neural Networks (RNN) using LSTM layers. The two indepen-
dent data modes are fused within a two-stream network so combining the complementary
signals from the multiple viewpoint video (MVV) and IMUs. Currently, there is no dataset
available containing IMU and MVV video with a high-quality ground truth. We release such
a multi-subject, multi-action dataset as a further contribution of this work.

2 Related Work
Approaches can be split into two broad categories; a top-down approach to fit an articulated
limb kinematic model to the source data and those that use a data driven bottom-up approach.

Lan [18] provide a top down model based approach, considering the conditional inde-
pendence of parts; however Inter-Limb dependencies (e.g. symmetry) are not considered. A
more global treatment is proposed in [17] using linear relaxation but performs well only on
uncluttered scenes. The SMPL body model [21] provides a rich statistical body model that
can be fitted to incomplete data and Marcard [35] incorporated IMU measurements with the
SMPL model to provide pose estimation without visual data.

In bottom-up pose estimation, Ren [24] recursively splits Canny edge contours into seg-
ments, classifying each as a putative body part using cues such as parallelism. Ren [23] also
used BoVW for implicit pose estimation as part of a pose similarity system for dance video
retrieval. Toshev [31], in the DeepPose system, used a cascade of convolutional neural net-
works to estimate 2-D pose in images. Sanzari [26] estimates the location of 2D joints, before
predicting 3D pose using appearance and probable 3-D pose of the discovered parts with a
hierarchical Bayesian model. While Zhou [38] integrates 2-D, 3-D and temporal information
to account for uncertainties in the data. The challenge of estimating 3D human pose from
MVV is currently less explored, although initial work by Trumble [32] used MVV with a
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simple 2D convolutional neural network (convnet), and Wei [36] performed related work
aligning pairs of 3D human pose. While Huang [15] used a tracked 4-D mesh of a human
performer from video reconstruction for estimating pose.

To predict temporal sequences, RNNs and their variants including LSTMs [13] and Gated
Recurrent Units [7] have recently shown to successfully learn and generalise the properties
of temporal sequences. Graves [10] was able to predict isolated handwriting sequences, and
transcribe audio data with text [11]. While Alahi [4] was able to predict human trajectories
of crowds by modelling each human with an LSTM and jointly predicting the paths.

In the field of IMUs, Roetenberg [25], used 17 IMUs with 3-D accelerometers, gyroscopes
and magnetometers to define the pose of a subject. Marcard [33] fused video and IMU data
to improve and stabilise full body motion capture. While Helten [12] used a single depth
camera with IMUs to track the full body.

3 Methodology
A geometric proxy of the performer is constructed from MVV on a per frame basis and
passed as input into a convnet designed to accept a 3-D volumetric representation, the network
directly regresses an embedding that encodes 3-D skeletal joint positions. That estimate is
then processed through a temporal model (LSTM) and fused with a similarly processed signal
from a forward kinematic solve of the IMU data to learn a final pose embedding (Fig. 2).

3.1 Volumetric Representation of Proxy
Images from the MVV camera views are integrated to create a probabilistic visual hull
(PVH) adapting the method of Grauman [9]. Each of the C cameras, c = [1,C], where C >
3, is calibrated with known orientation Rc, focal point COPc, focal length fc and optical
centre ox

c,o
y
c, the image from which is denoted Ic. A 3D performance volume centred on

the performer, is decimated into voxels V = {V1, . . . ,Vm} approximately 1cm3 in size. Voxel
occupancy from a given view c is defined as the probability:

p(V |c) = B(Ic(x[Vi],y[Vi])) (1)

Where B(.) is background subtraction of Ic from a clean plate at image position (x,y) and
where the voxel Vi projects to:

x[Vi] =
fcvx

vz
+ox

c and y[Vi] =
fcvy

vz
+oy

c, (2)

where
[

vx vy vz
]

= COPc−R−1
c Vi. (3)

The overall probability of occupancy for a given voxel p(V ) is the product over all views:

p(Vi) =
C

∏
i=1

p(V |c), (4)

calculated for all Vi ∈ V to create the initial PVH. This is down sampled via a Gaussian filter
to a volume of dimensions 30×30×30, the input size for our CNN.
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Figure 2: Network architecture (a) comprising two streams: a 3D Convnet for MVV/PVH
pose embedding, and kinematic solve from IMUs. Both streams pass through LSTM (b)
before fusion of the concatenated estimates in a further FC layer.

3.2 Network Architecture
3.2.1 Volumetric Pose Estimation

The MVV processes volumetric input through a series of 3-D convolution and max-pooling
layers to a series of fully connected (fc) layers terminating in 78-D output layer (3× 26
encoding Cartesian coordinates of 26 joints). Table 1 lists the filter parameters for each
layer (Fig. 2a, red stream). Both max-pooling layers are followed by a 50% dropout layer
and ReLu activation is used throughout. A training set comprising exemplar PVH volumes
V = {v1,v2, ...,vn} downsampled to 30×30×30 and corresponding ground truth poses P =
{p1, p2, ..., pn} are used to learn pose embedding E(V ) 7→ P minimising:

L(P,V ) =
n

∑
i=1
‖pi− f (vi)‖2

2. (5)

During training V is augmented by applying a random rotation about the central vertical
axis, θ = [0,2π] encouraging pose invariance with respect to the direction the performer.

Layer Conv1 Conv2 Conv3 MP1 Conv4 MP2 FC1 FC2 FC3
Filter dim. 5 3 3 2 3 2 1024 1024 1024
Num. filters 64 96 96 - 96 - 1024 1024 78
Stride 2 1 1 2 1 2 1 1 1

Table 1: Parameters of the 3-D Convnet used to infer the MVV pose embedding.

3.2.2 Inertial Pose Estimation

We use orientation measurements from 13 Xsens IMUs [25] to estimate the pose. The IMU
sites are the upper and lower limbs, feet, head, sternum and pelvis. For each IMU, k ∈ [1,13],
we assume rigid attachment to a bone and calibrate the relative orientation, Rk

ib, between them.
The reference frame of the IMUs, Riw, is also calibrated approximately against the global co-
ordinates. Using this calibration, a local IMU orientation measurement, Rk

m, is transformed to
a global bone orientation, Rb as follows: Rk

b = (Rk
ib)
−1Rk

iwRk
im. The local (hierarchical) joint

rotation, Ri
h, for bone i in the skeleton is inferred by forward kinematics: Ri

h = Ri
b(R

par(i)
b )−1,

where par(i) is the parent of bone i. The forward kinematics begins at the root and proceeds
down the joint tree (with unmeasured bones kept fixed).
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3.2.3 LSTM Temporal Prediction

Both the image and inertial sensors estimate on a per frame basis, however it is desirable to
exploit the temporal nature of the signal. Following the success of RNNs for sequence predic-
tion, we propose a Temporal Sequence Prediction (TSP) model to learn previous contextual
joint estimations to provide the ability to generalise and predict future joint locations. We use
Long Short Term Memory (LSTM) layers [13] that are able to store and access information
over long periods of time but mitigate the vanishing gradient problem common in RNNs
(Fig. 2, right). Given an input vector xt and resulting output vector ht , there are two learnt
weights W and U , to learn the function that minimises the loss between the input vector and
the output vector ht = ot ◦σh(ct) (◦ denotes the Hadamard product), where ct is the memory
cell

ct = ft ◦ ct−1 + it ◦σh(Wxxt +Ucht−1 +bc)
(6)

which is formed by three gates shown in Fig 2 (b), an input gate it controls the extent to which
a new input vector xt is kept in the memory,

it = σg(Wixt +Uiht−1 +bi).
(7)

A forget gate ft controls the extent to which a value remains in memory,

ft = σg(Wf xt +U f ht−1 +b f )
(8)

and an output gate ot controls the extent to which the value in memory is used to compute
the output activation of the block,

ot = σg(Woxt +Uoht−1 +bo)
(9)

Where the activation functions are as follows; σg a sigmoid function, σh is a hyperbolic
tangents, and b is a vector constant. The weights are trained with back-propagation using
the same euclidean loss function as in equation 5. There is one independent model for each
modality, the vision and IMU, and LSTM learns joint locations based on the previous f
frames and predicts their future position. In implementation, we used two layers both with
1024 memory cells, look back f = 5 and a learning rate of 10−3 with RMS-prop [8].

3.2.4 Modality Fusion

The vision and IMU sensors both independently provide a 3D coordinate per joint estimate.
Therefore, it would make sense to incorporate both modes into the final estimate, given their
complementary nature. Naively, an average of the two joint estimates could be used, this
would be fast and effective assuming both modalities have small errors, however it is likely
that often large errors will be present on one of the modes. We therefore propose to fuse
the two modes with a further fully connected layer. This learns the mapping between the
predicted joint estimates of the two data sources and the actual joint locations, allowing errors
in the pose from the vision and IMU to be identified and corrected for the combined fused
model. The fully connected fusion layer consists of 64 units and was trained with an RMS-
prop optimiser [8] with learning rate of 10−4. All stages of the model are implemented using
Tensorflow.
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4 Evaluation
We evaluate our approach on two 3D human pose datasets. We evaluate our MVV only
method (Sec 3.1) for pose estimation, i.e. using visual data alone, on the MVV dataset Hu-
man3.6M [16]. Second, we evaluate our full proposed network (using MVV and IMU data)
on TotalCapture; a new dataset containing MVV and IMU data (plus ground truth).

4.1 Human 3.6M
The Human 3.6M dataset [16] consists of 3.6 million MVV and vicon frames, with 5 female
and 6 male subjects, captured on 4 cameras.The subjects are performing typical activities
such as walking, eating, etc. Given the lack of IMU data, we are only able to evaluate the
performance of the vision component (3D convnet) of our proposed approach. That is from
the upper (red, and red+green) branch of Fig 2 (a) without fusion of the IMU data. We use
the standard evaluation protocol as followed by [16, 19, 28, 29, 30] where subjects S1, S5,
S6, S7, S8 are used for training and Subjects S9, S11 provide the test sequences. We also
compare the results of our proposed approach PVH-TSP to a 3D triangulated version of
the recent Convolution Pose Machine [6] with error rejection, Tri-CPM. Per camera 2D
joint estimates are triangulated into a 3D point, using a rejection method that maximises the
number of 2D estimates with the lowest 3D re-projection error x, via a sigmoid based error
metric Eo =

1
1+exp(a∗x−b) , where a and b are constants controlling confidence fall off. This is

also presented with further training on the Temporal Sequence Predictor (TSP) model from
section 3.2.3, denoted TRI-CPM-TSP. To evaluate performance we use the 3D Euclidean
error metric, the mean Euclidean distance between the regressed 3D and ground truth, aver-
aged over all 17 joints in millimetres (mm). Results of our 3D volumetric approach with the
Temporal Sequence Prediction (TSP) compared to previous approaches is shown in Table 2.
Our approach achieves excellent results despite excluding the fusion with the kinematic based

Approach Direct. Discus Eat Greet. Phone Photo Pose Purch.
Lin [19] 132.7 183.6 132.4 164.4 162.1 205.9 150.6 171.3
ekin [29] 85.0 108.8 84.4 98.9 119.4 95.7 98.5 93.8
Tome [30] 65.0 73.5 76.8 86.4 86.3 110.7 68.9 74.8
Tri-CPM [6] 125.0 111.4 101.9 142.2 125.4 147.6 109.1 133.1
Tri-CPM-TSP [6] 67.4 71.9 65.1 108.8 88.9 112.0 55.6 77.5
PVH-TSP 92.7 85.9 72.3 93.2 86.2 101.2 75.1 78.0

Sit. Sit D Smke Wait W.Dog walk W. toget. Mean
Lin [19] 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1
ekin [29] 73.8 170.4 85.1 116.9 113.7 62.1 94.8 100.1
Tome [30] 110.2 173.9 85.0 85.8 86.3 71.4 73.1 88.4
Tri-CPM [6] 135.7 142.1 116.8 128.9 111.2 105.2 124.2 124.0
Tri-CPM-TSP [6] 92.7 110.2 80.3 100.6 71.7 57.2 77.6 88.1
PVH-TSP 83.5 94.8 85.8 82.0 114.6 94.9 79.7 87.3

Table 2: A Comparison of our approach to other works on the Human 3.6m dataset

IMU. We observe competitive performance wrt. the state of the art although some actions
perform poorly; this is likely due to the limited view (4) of Human3.6M affecting the PVH
quality.

4.2 Total Capture
There are a number of high-quality hand labelled 2D human pose datasets [5, 20]. However,
the hand labelling of 3D human pose is far more challenging and optical motion capture
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ROM Sub. 1 Walking Sub. 2 Act Sub. 3 Running Sub 4 Freestyle Sub. 5
Figure 3: Examples of performance variation in the proposed TotalCapture dataset (cam. 1).

systems such as Vicon [3] are the only reliable method for ground truth labelling. This
hardware constraint greatly reduces the viability of existing datasets; Table 3 shows the trade-
offs between existing 3D human pose datasets. Human3.6M has a large amount of ground

Dataset NumFrames NumVideoCams Vicon GT IMU data
Human3.6M [16] 3,136,356 4 Y N
HumanEva [27] 40,000 7 Y N
TNT15 [22] 13,000 8 N Y
Total Capture(Proposed) 1,892,176 8 Y Y

Table 3: Characterising existing 3D human pose datasets and TotalCapture

truth labelled videos, but no IMU sensor data, while TNT15 has only a small amount of video
frames, and is missing true Vicon ground truth labelling. HumanEva has a low number of
frames, and no IMU data. Given the compromise in each dataset, we propose and release
our 3D human pose dataset TotalCapture1; the first dataset to have fully synchronised video,
IMU and Vicon labelling for a large number of frames (∼ 1.9M), for many subjects, activities
and viewpoints. The data was captured indoors in a volume measuring roughly 4x6m with 8
calibrated full HD video cameras recording at 60Hz on a gantry suspended at approximately
2.5 metres, with examples shown in Fig 3. The Vicon high-speed motion capture system [3]
provides 21 pixel-accurate 3D joint positions and angles. Obtaining this ground-truth required
visible markers to be worn, however these are not used by our algorithm. The size of these
markers (0.5cm3) is negligible relative to the volume and are not visible in the mattes and
inconspicuous in the RGB images. While the XSens IMU system [25] consists of 13 sensors
on key body parts, head, upper/lower back, upper/lower limbs and feet. Clean plates allow
for accurate per pixel background subtraction and this is also made available. Total Capture
consists of 4 male and 1 female subjects, each performing five diverse performances, repeated
3 times: ROM, Walking, Acting, Running and Freestyle. An example of each performance and
subject variation is shown in Fig 3 and video.

The acting and freestyle performances, in particular, are very challenging with actions
such as yoga, giving directions, bending over and crawling, see Fig 3. We partition the dataset
wrt subjects and performance sequence, the training consists of performances: ROM1,2,3;
Walking1,3; Freestyle1,2; Acting1,2; and Running1 on subjects 1,2 and 3. The test set is the
performances Freestyle3 (FS3), Acting (A3) and Walking2 (W2) on subjects 1,2,3,4 and 5.
This setup allows for testing on unseen and seen subjects but always unseen performances.

4.3 Total Capture Evaluation
To fully test and evaluate our approach we use the Total Capture dataset, with the volumetric
vision, IMUs and fully connected fusion layer. We compare to two state of the art approaches,
the 3D triangulated CPM, Tri-CPM, described in section 4.1 and a multi-view matte based
2D convolutional neural network approach [32], 2D Matte, both with and without Temporal

1The TotalCapture dataset is available online at http://cvssp.org/data/totalcapture/.
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8 TOTAL CAPTURE: POSE ESTIMATION FUSING VIDEO AND IMU DATA

Sequence Predictor (TSP) training. 2D Matte uses MVV to produce a PVH from which a
spherical histogram [14] is used as input to an eight layer 2D convolution neural network.
The performance of our approach on the Total Capture dataset using the 3D Euclidean error
metric over the 21 joints is shown in table 4.

Approach SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
W2 FS3 A3 W2 FS3 A3

Tri-CPM [6] 79.0 112.1 106.5 79.0 149.3 73.7 99.8
Tri-CPM-TSP [6] 45.7 102.8 71.9 57.8 142.9 59.6 80.1
2D Matte [32] 104.9 155.0 117.8 161.3 208.2 161.3 142.9
2D Matte-TSP [32] 94.1 128.9 105.3 109.1 168.5 120.6 121.1
3D PVH 48.3 122.3 94.3 84.3 168.5 154.5 107.3
3D PVH-TSP 38.8 86.3 72.6 69.1 112.9 119.5 81.1
Solved IMU 62.4 129.5 78.7 68.0 162.5 146.0 107.9
Solved IMU-TSP 39.4 118.7 52.8 58.8 141.1 135.1 91.0
Fused-Mean IMU+3D PVH 37.3 113.8 61.3 45.2 156.7 136.5 91.8
Fused-DL IMU+3D PVH 30.0 90.6 49.0 36.0 112.1 109.2 70.0

Table 4: Comparison of our approach on Total Capture to other human pose estimation
approaches, expressed as average per joint error (mm).

The table shows how the performance of our proposed approach Fused-DL IMU+3D
PVH greatly outperforms the performance of the previous approaches [6, 32], across a wide
range of sequences & subjects, with a reduction of over 10mm error per joint. The ability of
the TSP through the LSTM layers to effectively predict the joints is visible when comparing
with & without the TSP, 3D PVH and 3D PVH-TSP, where the error is reduced by over
20mm.

Table 4 also shows the performance of the sub parts of the approach, Solved IMU uses
the raw IMU orientations within the kinematic model described in section 3.2.2 and Solved
IMU-TSP learns a TSP model on the solved IMU joint positions. Examining the IMU Solved
IMU-TSP) and vision (3D PVH TSP) independently illustrates that through the fusion of
the two modes around 10-20mm of per joint error reduction is achievable. This is likely
to be due to the complementary performance of the two data sources. With respect to the
fusion of the Solved IMU-TSP and 3D PVH-TSP, we contrast our proposed fully connected
layer fusion Fused-DL IMU+3D PVH with a simple mean of the joint estimates from the
two data modes Fused-Mean IMU+3D PVH. Fig 4 quantifies the per frame error for the
key techniques over the unseen subject S4 and performance FS3. Visually it can be seen
that in the initial part of the sequence, the video based 3D PVH has a lower error than the
solved IMU, however, after frame 1400 the 3D PVH increases in error and the IMU performs
better. By fusing both modes we are able to have a consistently low error for the human pose
estimation, with a smoother error compared to the high variance of the separate data modes.
Fig 5 qualitatively shows the two modes and fused result for a selected number of frames.
The differences between the inferred poses can be quite small, indicating the contribution

of all components of the approach. Fig 6 and the video provide additional results. Run-time
performance is 25fps, including PVH generation.

4.3.1 Training Data Volume

Within CNN based systems, the amount of data required to train effectively is a key concern.
Therefore, we perform an ablation to explore the effect of the amount of training data on the
accuracy. With the test sequences being kept consistent throughout as before, an increasing
percentage of total available training data was used from Subjects 1, 2 and 3, randomly
sampled from maximum of ∼ 250k MVV frames. At 20%, 40%, 60%, 80% the relative
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Figure 4: Per frame accuracy of our proposed approach on sequence FS3 Subject4 (Green
dotted line indicates frame shown in examples in Fig 5).

Fr. 700 3D PVH-TSP SolvedIMU-TSP Fused-DL

Fr. 1480 3D PVH-TSP SolvedIMU-TSP Fused-DL
Figure 5: Visual comparison of poses resolved at different pipeline stages. TotalCapture:
Freestyle3, Subject 4.

Sub4 FS3 Fr. 219 Sub5 FS3 Fr. 710

Sub3 FS3 Fr. 1071 Sub2 F33 Fr. 2763
Figure 6: Additional results across diverse poses within TotalCapture. See video for more.

decrease in accuracy was 87.1%, 90.4%, 96.7% and 99.4% respectively. This suggests, for
the purposes of CNN training, the range of motions in our dataset can be well represented by
a relatively small sample, and that the internal model of the network can still generalise well
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and without over-fitting having only seen a sparse set of ground truth poses.

4.3.2 Analysis on Number of Cameras Used

We investigate the effect of the estimated 3D joint accuracy on the number of cameras used
to construct the PVH. The experiment used 4, 6, and 8 cameras equally spaced around the
volume, Table 5 shows the accuracy for the 3D PVH component, for the different subjects
with increasing number of cameras. It shows there is only a minor impact on the performance

Num Cams SeenSubjects(S1,2,3) UnseenSubjects(S4,5) Mean
W2 FS3 A3 W2 FS3 A3

4 93.8% 90.8% 95.3% 91.6% 89.5% 93.5% 90.4%
6 94.3% 99.3% 97.4% 96.0% 98.2% 98.1% 96.2%
8 100% 100% 100% 100% 100% 100% 100%

Table 5: Relative accuracy change (mm/joint) when varying the number of cameras.

of the approach if the number of cameras is halved, still 90% performance with only 4 cams,
despite the PVH becoming qualitatively worse in appearance, as illustrated in Fig 7. Likewise,
Fig 7(c) shows a PVH for the Human3.6M dataset. It is more noisy due to the 4 cameras
being closer to the ground, and noise on the mattes, however we still achieve state of the art
performance.

((a)) Tot. Cap., 8 cams ((b)) Tot. Cap., 4 cams ((c)) H3.6M, 4 cams
Figure 7: Varying PVH fidelity of performer in the ’T’ pose vs. camera count.

5 Conclusion
We have presented a novel algorithm for 3D human pose estimation that fuses video (MVV)
and inertial (IMU) signals to produce a high accuracy pose estimate. We first outlined a 3D
convnet for pose estimation from purely visual (MVV) data and showed how a temporal
model (LSTM) can deliver state of the art results using this modality alone on a standard
dataset (Human3.6M), with a per joint error of only 87.3mm. We next showed how the fusion
of IMU data through a two-stream network, incorporating the LSTM, can further enhance
accuracy with a 10mm improvement beyond state of the art, A further contribution was the
TotalCapture dataset; the first publicly available dataset simultaneously capturing MVV, IMU
and skeletal ground truth.
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