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Abstract. This paper addresses the problem of reconstructing an inte-
grated 3D model from multiple 2.5D range images. A novel integration
algorithm is presented based on a continuous implicit surface represen-
tation. This is the first reconstruction algorithm to use operations in
3D space only. The algorithm is guaranteed to reconstruct the correct
topology of surface features larger than the range image sampling res-
olution. Reconstruction of triangulated models from multi-image data
sets is demonstrated for complex objects. Performance characterization
of existing range image integration algorithms is addressed in the second
part of this paper. This comparison defines the relative computational
complexity and geometric limitations of existing integration algorithms.

1 Introduction

Recent research has resulted in the independent publication of several algorithms
that reconstruct triangulated 3D surface models of complex objects [4, 6, 7, 9].
The goal of surface reconstruction is to estimate a manifold surface, S’, that
approximates an unknown object surface, S, using a sample of points, x =
(z,y,2), in 3D Euclidean space, X = {xo,...,Xn—1}, combined with knowledge
about the sampling resolution, Ax, measurement error, £, and measurement
confidence, p(S’/x;). Given a method we want to be able to specify conditions
on the original surface, S, and sample, X, that allow S’ to be a reliable model.

Hoppe et al. [4] presented a general method for constructing an implicit sur-
face representation from unstructured 3D points. Polygonal models were then
generated using a ‘marching cubes’ approach [1]. The algorithm is ‘static’ in the
sense that all the image data is required prior to the polygonisation process.
Soucy et al. [7] integrated range images using canonic subsets of the Venn dia-
gram. The canonic subsets each represent the overlap between a subset of the
2.5D range images and are associated with a 2D viewpoint reference frame. The
2D reference frames are used to eliminate redundant data and merge intersecting
regions. Soucy et al. [8] extended this algorithm to be ‘dynamic’ allowing the
sequential integration of new range images. Turk et al. [9] integrated range image
triangulations using a dynamic mesh ‘zippering’ approach. Overlapping regions
of meshes are eroded and the boundary correspondence found by operations in
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3D space. A local 2D constrained triangulation is then used to join overlapping
mesh boundaries to form a single mesh. Boissonnat [2] and Rutishauser et al.
[6] retriangulate two overlapping meshes using local 2D constraints on triangle
shape. The four integration algorithms are completely different in their approach
to constructing a single triangulated model. This results in different complexity,
limitations and failure modes.

A new range image integration algorithm is presented in section 2. This is
based on a continuous implicit surface representation which combines geometry
and topology information from individual range images. This is the first integra-
tion algorithm which uses operations entirely in 3D space. Unlike all previous
approaches the method does not require either local or global projection to 2D
sub-planes. This eliminates limitations on local surface geometry inherent in pre-
vious approaches. Performance characterization of existing integration methods
is presented in section 3. This comparison defines the relative computational
complexity and geometric limitations for reliable reconstruction.

2 New Integration Algorithm

The new range image integration algorithm based on a ‘continuous implicit sur-
face’ is presented in section 2.1. A triangulated model is construted using a
standard implicit surface polygonisation algorithm, section 2.2. Results for the
reconstruction of complex objects are presented in section 2.3. The computa-
tional complexity and limitations of this approach are discussed in section 3.

2.1 Continuous Implicit Surface Construction

An implicit surface is defined as the zero-set of a scalar field function f(x) = 0.
The aim of representing a set of surface measurements, X = {xg....xny_1}, as
an implicit surface is to construct a smooth field function, f(x), such that the
zero-set approximates the data X as closely as possible. A piecewise continuous
implicit surface function for multiple range images is presented in this section.
This is based on the integration of multiple overlapping 2.5D triangulations. Ac-
curate representation of surface geometry is achieved by combining overlapping
measurements according to their confidence. Boundary information is integrated
from multiple meshes to obtain an explicit representation of the measured surface
topology.

Meshes, M;, are initially constructed from each range image using a step
discontinuity constrained triangulation, [6, 7, 9]. Range images are triangulated
in the 2D image plane using a constant distance threshold, t; = nAx. This
defines the local surface continuity for each range image.

For a single mesh M the field function, f(x), is constructed as the signed
distance to the nearest mesh point, p(z,y, z). A binary function, b(x) = [0, 1],
is used to explicitly label field function values, f(x), with nearest points on the
mesh boundary. If the nearest point, p, is not on the mesh boundary, b(x) = 0,
the signed distance is the dot product of the vector to the nearest point, (x —p),



with the surface normal, n,, at the nearest point: f(x) = (x — p).n,. Alterna-
tively, if the nearest point, pp, is on the mesh boundary, b(x) = 1, the signed
distance function is evaluated as the sign of the dot product of the vector to the
nearest points, (X — pp), with the nearest point normal, n,,, multiplied by the
Euclidean distance: f(x) = sign[(x — ppb).np,] X |(x — pb)|. The zero-set of the
field function, f(x), for a single mesh, M, is thus a piecewise continuous function
with the same topology as the mesh. The implicit surface representation for a
single mesh is illustrated in Figure 1(a) for a 2D cross section.

Integration of multiple range images requires the construction of an implicit
surface function based on multiple overlapping meshes My, where k =0...M — 1.
A field function fi(x) can be implemented as described above for a single mesh.
The problem is then to integrate the individual field functions into a single
continuous surface, f(x), and boundary label, b(x). This is achieved by first
evaluating fr(x) for each individual mesh and then integrating them using a
simple set of rules based on local surface geometry:

i) Evaluate the signed field function,fx(x), and boundary function, by (x), for each
mesh My, for k =0..m — 1.

ii) Find the nearest non-boundary mesh point, bz (x) = 0, from the set fx(x) , fmin (x).
iii) If a non-boundary point, fmin(x), does not exist return the nearest boundary
point, by(x) = 1: f(X) = fminy,ung (X) and b(x) = 1.

iv) Else find all non-boundary points, bx(x) = 0, with the same orientation as the
nearest point, fmin(X): F = {fsame; (X)} @ = 0...Nsame, where nmin -Nsame; > 0

v) Find the nearest non-boundary point with opposite orientation, fopposite(X), where
Nmin -Nopposite < 0.

vi) Eliminate all points in F, where fsame; (X) > fopposite(X) .

vii) Evaluate the nearest point as a weighted average of all points in F:

f(x) =", wifr(x) where ) wi =1 and b(x) =0

This set of rules enables the integration of overlapping meshes to define a
continuous zero-set of the field function, f(x) = 0, in all regions where a mesh
is continuous and non-zero elsewhere. The rules account for the special cases
of two overlapping surfaces with different orientations and multiple overlapping
surfaces. The field function evaluation according to the rules given above is il-
lustrated schematically in Figure 1 for the different cases of overlapping surface.
Step (iii) explicitly defines mesh boundaries, b(x) = 1, providing an integrated
representation of the local surface topology. Steps (iv—vi) eliminate ambiguity
if there are multiple overlapping meshes corresponding to different surface re-
gions. This enables correct representation for surface regions of high curvature
and different surfaces in close proximity, section 3.2. The weighted average of
nearest points, step (vii), enables smooth integration of overlapping meshes using
estimates of measurement confidence or blending functions, [3].

2.2 Implicit Surface Polygonisation

Polygonisation of implicit surfaces has received considerable interest for visulisa-
tion in medical imaging and computer graphics. The ‘Marching Cubes’ algorithm
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Fig. 1. Continuous Implicit Surface Function: (a) Single mesh, (b) Two meshes
from same surface, (¢) Two meshes from different adjacent surface with opposite
orientation, (d) Three meshes from three different adjacent surfaces.

uses a uniform subdivision of 3D space to reconstruct a triangulated model of
a manifold surface without boundaries, [1]. Extension of marching cubes to the
polygonisation of a bounded implicit surface was addressed by Hoppe et al. [4].
The modified marching cubes algorithm only reconstructs the implicit surface
for cubes which do not intersect the implicit surface boundary. Application of a
modified marching cubes algorithm to the mesh based implicit surface enables
a 3D triangulated model to be constructed. Explicit representation of the sur-
face boundary, b(x) = 1, together with the implicit surface, f(x) = 0, enables
guaranteed reconstruction of a polygonal model with the same topology as the
surface measurements. To ensure correct reconstruction of surface features the
spatial subdivision used in the marching cubes algorithm must be less than the
sampling resolution, Ax. Previous implicit surface based approaches [4] did not
use a continuous representation, resulting in reconstruction errors, section 3.2.

2.3 Results

Results of the reconstruction process for four objects are shown in Figure 2. All
models were constructed from 8—10 range images. The bunny 2 and telephone?
model consist of approximately 25000 triangular elements. This data was pre-
viously used to demonstrate the mesh zippering algorithm, [9]. The teapot 3
and soldier® consist of 15000 and 80000 triangular elements. This data was pre-
viously used to demonstrate the Canonic subsets algorithm, [8]. The results

2 Cyberware scanner range data registered using ICP [9]
3 NRCC scanner range data [5] registered using InnovMetric software [8]



demonstrate that the integration algorithm correctly reconstructs the surface
topology for features greater than the sampling resolution, Ax. Holes in the
original data are correctly preserved in the reconstructed model. Surface regions
of high curvature are correctly reconstructed as continuous surfaces. Different
surfaces in close proximity, that occur for thin object regions, are also correctly
reconstructed. This overcomes the limitations of previous integration methods,
[4, 6, 9], in reconstructing surfaces of complex geometry, section 3.3. These re-
sults indicate that the integration algorithm reliably reconstructs the underlying
surface topology. The computation time for the reconstruction of an integrated
model of 25000 elements on a Sun sparc 10 was approximately 12 minutes. This
is comparable to previously reported integration times [8].

3 Performance Characterization

A comparative analysis of integration algorithms is presented in this section.
Hilton [3] defines integration algorithms in a common framework for direct com-
parison. Implementation is also discussed including requirements that were pre-
viously undocumented. The comparison of integration algorithms presented here
focuses on two principal issues. Firstly, the computational complexity of each of
the algorithms, section 3.1. Secondly, identification of inherent limitations in
each of the integration methods, section 3.2. The comparative analysis considers
the following algorithms:

I: Point-Normal Implicit Surface (Hoppe et al. [4]).
II: Mesh Implicit Surface (this paper).

III: Canonic Views (Soucy et al. [7]).

IV: Mesh Zippering (Turk et al. [9]).

V: Mesh Growing (Rutishauser et al. [6]).

3.1 Time Complexity

Defining a general form for the computational complexity of each of the inte-
gration algorithms is not possible as it is a function of the particular image set.
This depends on the number of images, m, the number of points in each im-
age, Ny, the proportion of redundancy between images and the length of the
boundary between overlapping images. A qualitative comparison of the worst-
case computational complexity of each algorithm is given, for m images of N
points, by approximating the cost of each stage of the integration process and
deriving the overall order of complexity. To enable quantitative comparison of
the computational complexity we consider a special case: the cost of integrating
two images of N points with 50% overlap. Results of the complexity analysis are
summarised in Table 1.

Nearest point search is common to all integration algorithms. Implemented
as a brute force search the time complexity is O(N), where N is the number
of points. Uniform subdivision of the 3D space facilitates a local search for the
nearest point, [4, 9]. Subdivision of the 3D space into voxels of approximately
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Method Overall Complexity| Complexity of
m Images Integrating 2 images
I Implicit Surface Points+Normals O(m?N) 6N
IT Implicit Surface Mesh O(m>N) 12N
ITI Canonic Views O(m?N) 4N + 2V N
IV Mesh Zippering O(m?N) N+ VN
V Mesh Growing O(mNlogN) |20NlogN(K = 10)

Table 1. Integration Algorithm Complexity

the same size as the sampling resolution, Ax, reduces the computational cost
to approximately constant time. This can be efficiently encoded using a hash
table representation requiring O(N) space. This approach assumes that the in-
dividual range images are uniformly sampled and measurement error, ¢ << Ax.
Throughout this analysis it is assumed that nearest point search is performed
in constant time. Method V requires the neighbourhood of K nearest points.
A kD tree provides a suitable data structure, [2, 4, 6]. Pre-computation of the
kd-tree is O(NlogN) complexity and space requirement is O(N). The K nearest
point search is then computed in O(log N) time.

Step discontinuity constrained 2D triangulation is common to methods (II—
V). This operation consists of comparing the 3D position of each data point to
its 8-neighbourhood and then thresholding to determine the connectivity. This
requires on average 3 comparisons and Euclidean distance computations per
data point. The step discontinuity constrained triangulation has computational
complexity, O(N).

Time complexity of the critical sub-stages for each integration algorithm are
outlined below. This complexity analysis presents the algorithms in a common
framework for qualitative comparison, [3]. It is assumed that the number of re-
dundant points between two overlapping images of N points is O(N) and that
the resulting boundary length of non-redundant subsets is O(v/N). Previously
complexity analyses were presented for methods I [1, 4], III [8] and V [2].

Methods I and II: Implicit Surfaces
Computation of hash table spatial subdivision: O(mN)
Implicit surface function evaluation: 0(m)
Number of marching cube implicit surface function evaluations: 0(mN)
Overall complexity: 0(m>N)
Method III: Canonic views
Computation of Venn Diagram: 0(m>N)

Reparameterisation into canonic sub-views: O(m>N)
Retriangulation of all redundant canonic subsets: O(
Elimination of redundancy in canonic subsets: O(m?
Retriangulation to build model: O(m+v/N)

Overall Complexity: O(m?>N)

m2N)
N)



Method IV: Mesh Zippering
Redundancy test using nearest point: O(m)
Elimination of redundant mesh elements: 0(m?N)
Clipping of mesh boundary: 0(m+v/N)
Overall complexity: O(m?*N)

Method V: Mesh Growing
Computation of the &D tree: O(mN log N)
Search for K-Nearest Neighbours: O(K log N) = O(log N)
Surface retriangulation: O(KmN log N) = O(mN log N)
Overall Complexity: O(mN log N)

3.2 Geometric Limitations

This section identifies limitations inherent in each of the integration algorithms
for reliable surface reconstruction. The comparison focuses on limitations on
correct reconstruction of surface topology and geometry. Restrictions are identi-
fied by considering three cases: minimum hole size, maximum surface curvature
and minimum surface separation (Figure 3). Results are summarised in Table
2. Table 2 also includes general characteristics which relate to the integration
performance for a particular application. Computation type is specified as 2D or
3D according to the requirement for local or global projection to 2D sub-planes
which imposes limitations on the local geometry. Static computation requires
all data to be present prior to integration, conversely dynamic computation al-
lows sequential addition of new data. Additionally some integration algorithms
impose inherent limitations on the sampling process, restricting integration of
range images at a single resolution. Further details are given in [3].

2D/3D|  Static/ Sampling | Minimum | Minimum |Minimum Surface
Dynamic Feature Size|Crease Angle Separation
I 3D static uniform > 3nAx 140° nAx
II|| 3D static non-uniform nAx 30° Emaz
III|| 2D |semi-dynamic|non-uniform nAx 30° Emaz
IV||2D/3D| dynamic uniform 2nAx 90° nAx
\Y 3D dynamic |non-uniform| 2nAx 90° Emaz

Table 2. Integration Algorithm Limitations for Reliable Reconstruction
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Minimum Feature Size: This section defines the minimum hole size that
is guaranteed to be reconstructed. Method I does not explicitly represent mesh
boundaries and therefore requires a threshold to be set for the maximum dis-
tance from the mesh, v/3nAx. This results in invalid boundary extension of order
V3nAx which will fill any holes less than 2v/3nAx in size. Methods IT-IV use
the local mesh connectivity for model reconstruction. The aim is to preserve
holes that are identified in the step discontinuity constrained triangulation. The
constrained triangulation imposes a lower limit on the surface feature size, nAx,
for which the local surface connectivity will be reliably reconstructed. However,
method IV may fail due to ambiguities between overlapping mesh elements
that arise in the zippering algorithm. Holes less than twice the size of the indi-
vidual mesh elements may redundantly overlap. This limits the minimum feature
size for reliable reconstruction to 2nAz. Method V does not use the local mesh
continuity to constrain the topology of the triangulation. The maximum size of
an element added to the triangulation is limited explicitly by a distance thresh-
old. This threshold limits the minimum feature size for which the topology will
be correctly reconstructed to 2nAx.

Minimum Crease Angle: This section defines limitations on the reliabil-
ity of the integration process for regions of high surface curvature and crease
edges. This is quantified as the minimum crease angle, 6,,,;,, between two in-
tersecting planes across which the local topology is guaranteed to be correctly
reconstructed. Methods IT—IV may fail in regions of high curvature if the
constrained triangulation does not correctly reconstruct the connectivity due
to the increased distance between adjacent samples. The step discontinuity
threshold, t4 = nAx, imposes a limit on the minimum crease angle, 6,,;;, =
2tan~!(Ax/nAx). Typically n = 4 thus the sampling resolution imposes a min-
imum crease angle 6,,;, ~ 30°. Methods IV and V both require explicit
thresholds to be set for the maximum difference in orientation between adjacent
surface elements, > 90°. This imposes a hard limit on the minimum crease angle
that is reliably reconstructed,f,,;n ~ 90°. Method I will fail if an incorrect
tangent plane is used for the implicit surface distance function evaluation, f(x).
This results in spurious mesh artifacts in regions of high curvature. In practice
this imposes a minimum crease angle for reliable reconstruction, ,,;, =~ 140°.

Minimum Surface Separation: The third geometric structure that causes
failure of the integration process occurs where different surface regions are in
close proximity (i.e. thin object parts). This can be quantified as the minimum
separation between different surface regions. Reconstruction will fail if the algo-
rithm does not use the local connectivity and orientation information. Methods
ILIIT and V use the local surface orientation to define overlapping regions. The
lower limit for reliable reconstruction for these methods is therefore surface sep-
arated by the maximum measurement error €,,,,. Method I does not use the
local surface orientation and will therefore fail for surface regions separated by
less than the sampling resolution, nAx. Method IV relies on a nearest point
search to define the boundary intersection between meshes. This test may fail if
meshes from different surfaces are closer than the sampling resolution, nAx.



4 Conclusion

A novel registered range image integration algorithm has been presented. This
uses a mesh based implicit surface function to define the object surface as the
zero-set of a field function defined at any point in 3D space. The aim of this
algorithm is to estimate the underlying surface topological type from the mea-
sured data by reconstructing a triangulated model with the same topology. This
is the first integration algorithm that operates entirely in 3D space. Reliable
reconstruction is demonstrated for complex objects.

Performance characterization of existing integration algorithms is presented.
Qualitative analysis of the computational complexity demonstrates that most
algorithms are O(m?2N) for integration of m images of N points. Quantitative
analysis in specific cases indicates large difference in the constant time com-
plexity associated with each method. Geometric limitations for reliable recon-
struction are identified. This analysis demonstrates that reliable reconstruction
is only guaranteed for the integration algorithms based on Canonic sub-views [§]
and the mesh based implicit surface (this paper).

Future development of the integration algorithm presented in this paper
should focus on dynamic data integration and computational efficiency. Fur-
ther work on performance characterization is required to benchmark the relative
computational cost and validate the geometric limitations identified.
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