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1.1 Introduction

The global mobile communication industry is growing rapidly. Today there are

already more than 4 billion mobile phone subscribers worldwide [1], more than

half the entire population of the planet. Obviously, this growth is accompanied

by an increased energy consumption of mobile networks. Global warming and

heightened concerns for the environment of the planet require a special focus on

the energy efficiency of these systems [2]. The EARTH1 project [3] is a concerted

effort to achieve this goal and as part of its objectives, a holistic framework

is developed to evaluate and compare the energy efficiency of several design

approaches of wireless cellular communication networks.

For the quantification of energy savings in wireless networks, the power con-

sumption of the entire system needs to be captured and an appropriate energy

efficiency evaluation framework (E3F) is to be defined. The EARTH E3F pre-

sented in Section 1.2 provides the key levers to facilitate the assessment of the

overall energy efficiency of cellular networks over a whole country. The E3F pri-

marily builds on well-established methodology for radio network performance

evaluation developed in 3GPP; the most important addendums, introduced in

Sections 1.3 and 1.4, are to add a sophisticated power model of the base stations

1 EU funded research project EARTH (Energy Aware Radio and neTwork tecHnologies), FP7-
ICT-2009-4-247733-EARTH, Jan. 2010 to June 2012. https://www.ict-earth.eu
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Figure 1.1 EARTH Energy efficiency evaluation framework (E3F).

(BSs) as well as a large-scale long-term traffic model extension to existing 3GPP

traffic scenarios. Then, using the metrics defined in Section 1.5, in Section 1.6 the

E3F is applied in order to provide an assessment of the BS energy efficiency of a

3GPP LTE network deployed within an average European country. The energy

efficiency of LTE is compared to that of already deployed networks is discussed

in Section 1.7, and targets for the energy efficiency of future wireless networks

are given.

1.2 Energy Efficiency Evaluation Framework (E3F)

The widely accepted state-of-the-art to evaluate the performance of a wireless

network is to simulate the relevant aspects of the radio access network (RAN)

at system level. The computed results are, e.g. the system throughput measured

in bit/s, quality of service (QoS) metrics, and fairness in terms of cell-edge user

throughput. In order to ensure that the results generated by different RAN sys-

tem simulation tools are comparable, well defined reference systems and scenarios

are specified. This is an outcome of extensive consensus work from standardiza-

tion bodies, such as 3GPP [4], and international research projects, such as the

EU project Wireless World Initiative New Radio (WINNER) [5], with partners

from academia as well as from industry. The most recent example is the global

effort in ITU to evaluate system proposals for compliance with IMT-Advanced

requirements [6]. In that direction, the EARTH E3F builds on the 3GPP evalu-

ation framework for LTE [4].
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Fig. 1.1 shows the necessary enhancements over existing performance evalua-

tion frameworks, such that the energy efficiency of the entire network, comprising

component, node and network level, over an extended time frame can be quan-

tified. The EARTH E3F illustrated in Fig. 1.1, identifies the essential building

blocks that are necessary for an accurate holistic assessment of energy efficiency

enhancements. Although the specific realization of a system level simulation tool

largely depends on the specific problem at hand, as well as the chosen soft-

ware implementation, it is envisaged that for the assessment of combinations of

energy efficiency enhancements integrated into one holistic system concept, the

E3F should capture the following aspects:

r A sophisticated power model (specified in Section 1.3), that maps the RF

output power radiated at the antenna elements to the total supply power

of a BS site. The power model maps the gains on the component level (e.g.

an improvement of the energy efficiency of the power amplifiers) to energy

savings on the entire network.
r Long-term traffic models (established in Section 1.4), that describe load fluc-

tuations over a day and complement the statistical short-term traffic models.
r Large-scale deployment models (developed in Section 1.4) of large geographi-

cal areas are considered to extend the existing small-scale deployment scenar-

ios.

1.2.1 Small-Scale, Short-Term System Level Evaluations

Statistical traffic models (e.g. FTP file download or VoIP calls), specific small-

scale deployment scenarios (e.g. urban macro-cell consisting of 57 hexagonal cells

with uniformly distributed users), and power models that quantify the power

consumption of components within a node, constitute small-scale, short-term

system level evaluations (bottom block in Fig. 1.1). The small-scale, short-term

system level evaluations are carried out by a system level simulation platform,

augmented by a model capturing the BS power consumption.

1.2.2 Global E3F

In order to extend small-scale, short-term evaluations to a global scale, covering

countrywide geographical areas and ranging over a full day or week, long-term

traffic models and large-scale deployment maps are to be integrated into the

E3F, as illustrated in Fig. 1.1. The global assessment of network energy efficiency

comprises the following steps:

1. Small-scale, short-term evaluations are conducted for all scenarios (dense

urban, urban, suburban and rural) and for a representative set of traffic

loads, which captures the range between the minimum and the maximum

load observed in a certain deployment.
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Figure 1.2 Block diagram of a base station transceiver.

2. The system level evaluations provide energy consumption and other perfor-

mance metrics (e.g. throughput, QoS) for each small-scale deployment and a

certain traffic load.

3. Given the daily/weekly traffic profile of each deployment, the power consump-

tion over a day/week is generated by weighted summing of the short-term

evaluations.

4. Finally, the mix of deployment scenarios that quantify the area covered by

cities, suburbs, highways and villages, yield the global set of the large-scale

system energy consumption.

1.3 Power Model

This section provides a power model for various types of LTE Base Stations.

The power model constitutes the interface between component and system level,

which allows quantifying how energy savings on specific components enhance the

energy efficiency at the node and network level.

1.3.1 Base Station Power Consumption Breakdown

Fig. 1.2 shows a simplified block diagram of a complete BS that can be general-

ized to all BS types, including macro, micro, pico and femto BSs. A BS consists

of multiple transceivers (TRXs), each of which is serving one transmit antenna

element. A TRX comprises a Power Amplifier (PA), a Radio Frequency (RF)

small-signal transceiver section, a baseband (BB) interface including a receiver

(uplink) and transmitter (downlink) section, a DC-DC power supply, an active

cooling system, and an AC-DC unit (mains supply) for connection to the elec-

trical power grid. In the following the various TRX parts are analyzed.

Antenna Interface: The influence of the antenna type on power efficiency is

modeled by a certain amount of losses, including the feeder, antenna band-pass

filters, duplexers, and matching components. Since macro BS sites are often

situated at different physical locations as the antennas a feeder loss of about

σfeed=3dB needs to be added. The feeder loss of a macro BS may be mitigated

by introducing a remote radio head (RRH), where the PA is mounted at the same
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physical location as the transmit antenna. Likewise, feeder losses for smaller BS

types are typically negligible.

Power Amplifier (PA): Typically, the most efficient PA operating point is

close to the maximum output power (near saturation). Unfortunately, non-linear

effects and OFDM modulation with non-constant envelope signals force the

power amplifier to operate in a more linear region, i.e., 6 to 12 dB below satu-

ration [7]. This prevents Adjacent Channel Interference (ACI) due to non-linear

distortions, and therefore avoids performance degradation at the receiver. How-

ever, this high operating back-off gives rise to poor power efficiency ηPA, which

translates to a high power consumption PPA. Digital techniques such as clipping

and digital pre-distortion [8, 9] in combination with Doherty PAs [7] improve

the power efficiency and linearizes the PA, while keeping ACI under control, but

require an extra feedback for pre-distortion and significant additional signal pro-

cessing [9]. While these techniques are necessary in macro and micro BSs, they

are not used in smaller BSs, as the PA power consumption accounts for a smaller

percentage of the power breakdown, allowing for a higher operating back-off.

The Small-Signal RF Transceiver (RF-TRX) comprises a receiver and a trans-

mitter for uplink (UL) and downlink (DL) communication. The linearity and

blocking requirements of the RF-TRX may differ significantly depending on the

BS type, and so its architecture. Typically, low-IF (Intermediate-Frequency) or

super-heterodyne architectures are the preferred choice for macro/micro BSs,

whereas a simpler zero-IF architecture are sufficient for pico/femto BSs [10].

Parameters with highest impact on the RF-TRX energy consumption, PRF,

are the required bandwidth, the allowable Signal-to-Noise And Distortion ratio

(SiNAD), the resolution of the analogue-to-digital conversion, and the number

of antenna elements for transmission and/or reception.

Baseband (BB) Interface: The baseband engine (performing digital signal pro-

cessing) carries out digital up/down-conversion, including filtering, FFT/IFFT

for OFDM, modulation/demodulation, digital-pre-distortion (only in DL and for

large BSs), signal detection (synchronization, channel estimation, equalization,

compensation of RF non-idealities), and channel coding/decoding. For large BSs

the digital baseband also includes the power consumed by the serial link to the

backbone network. Finally, platform control and MAC operation add a further

power consumer (control processor).

The silicon technology significantly affects the power consumption PBB of

the BB interface. This technology scaling is incorporated into the power model

by extrapolating on the International Technology Roadmap for Semiconductors

(ITRS). The ITRS anticipates that silicon technology is replaced by a new gen-

eration every 2 years, each time doubling the active power efficiency but multi-

plying by 3 the leakage [11]. The increasing leakage puts a limit on the power

reduction that can be achieved through technology scaling. Apart from the tech-

nology, the main parameters that affect the BB power consumption are related

to the signal bandwidth, number of antennas and the applied signal process-
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ing algorithms. While the consumed power scales linearly with the bandwidth;

MIMO signal detection scales more than linearly with the number of antennas.

Power Supply and Cooling: Losses incurred by DC-DC power supply, mains

supply and active cooling scale linearly with the power consumption of the other

components, and may be approximated by the loss factors σDC, σMS, and σcool,

respectively. Note that active cooling is only applicable to macro BSs, and is

omitted in smaller BS types. Moreover, for RRHs active cooling is also obsolete,

since the PA is cooled by natural air circulation, and the removal of feeder

losses σfeed allow for a lower PA power consumption, PPA = Pout

ηPA·(1−σfeed)
, where

ηPA denotes the PA power efficiency.

Assuming that the BS power consumption grows proportionally with the num-

ber of transceiver chains NTRX, the breakdown of the BS power consumption at

maximum load, Pout=Pmax, amounts to

Pin = NTRX ·

Pmax

ηPA·(1−σfeed)
+ PRF + PBB

(1−σDC)(1−σMS)(1−σcool)
(1.1)

The efficiency is defined by η = Pout/Pin, whereas the loss factor is defined by

σ = 1−η. Note that the maximum RF output power per transmit antenna, Pmax,

is measured at the input of the antenna element, so that losses due to the antenna

interface (other than feeder losses) are not included in the power breakdown.

Table 1.1 summarizes the state of the art power consumption of various LTE

BS types as of the year 2010. By introducing RRHs in macro BS sites, so that

feeder losses σfeed and active cooling are avoided by mounting the PA close to

the transmit antenna, the power savings exceed 40%.

1.3.2 BS Power Consumption at Variable Load

In a conventional BS, the power consumption depends on the traffic load; it is

mainly the PA power consumption that scales down due to reduced traffic load.

This mainly happens when, e.g., the number of occupied subcarriers is reduced

in idle mode operation, and/or there are subframes not carrying data. Naturally

this scaling over signal load largely depends on the BS type; for macro BSs the

PA accounts for 55–60% of the overall power consumption at full load, whereas

for low power nodes the PA power consumption amounts to less than 30% of the

total.

Fig. 1.3 shows BS power consumption curves for a LTE system with 10MHz

bandwidth and 2×2 MIMO configuration. Three sectors are considered for macro

BSs, whereas omni-directional antennas are used for the smaller BS types. While

the power consumption Pin is load dependent for macro BSs, and to a lesser

extent for micro BSs, there is a negligible load dependency for pico and femto

BSs. The reason is that for low power BSs, the impact of the PA is diminishing.

Other components hardly scale with the load in a state of the art implementation;

although some more innovative designs could lead to an improved power scaling

at low loads. As can be seen in Fig. 1.3, the relations between relative RF output
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Table 1.1. Base station power consumption at maximum load of a LTE system with 2×2
MIMO for different BS types as of 2010.

Macro RRH Micro Pico Femto

BS Max Tx power [dBm] 43.0 43.0 38.0 21.0 17.0

(average) Pmax [W] 20.0 20.0 6.3 0.13 0.05

Feeder loss σfeed [dB] 3 0 0 0 0

PA Back-off [dB] 8.0 8.0 8.0 12.0 12.0

Max PA out (peak) [dBm] 54.0 51.0 46.0 33.0 29.0

PA eff. ηPA [%] 31.1 31.1 22.8 6.7 4.4

Total PA, Pmax

ηPA·(1−σfeed)
[W] 128.2 64.4 27.7 1.9 1.1

RF PTX [W] 6.8 6.8 3.4 0.4 0.2

PRX [W] 6.1 6.1 3.1 0.4 0.3

Total RF, PRF [W] 12.9 12.9 6.5 1.0 0.6

BB Radio (inner Rx/Tx) [W] 10.8 10.8 9.1 1.2 1.0

Turbo code (outer Rx/Tx) [W] 8.8 8.8 8.1 1.4 1.2

Processors [W] 10.0 10.0 10.0 0.4 0.3

Total BB, PBB [W] 29.6 29.6 27.3 3.0 2.5

DC-DC, σDC [%] 7.5 7.5 7.5 9.0 9.0

Cooling, σcool [%] 10.0 0.0 0.0 0.0 0.0

Mains Supply, σMS [%] 9.0 9.0 9.0 11.0 11.0

Total per TRX chain [W] 225.0 125.8 72.3 7.3 5.2

# Sectors # 3 3 1 1 1

# Antennas # 2 2 2 2 2

# Carriers # 1 1 1 1 1

Total NTRX chains, Pin [W] 1350.0 754.8 144.6 14.7 10.4

power Pout and BS power consumption Pin are nearly linear. Hence, a linear

approximation of the power model is justified:

Pin =

{
NTRX ·

(
P0 +∆p Pout

)
, 0<Pout≤Pmax

NTRX · Psleep , Pout=0
(1.2)

where Pmax denotes the maximum RF output power at maximum load, P0 is the

power consumption calculated at the minimum possible output power, assumed

to be 0.1% of Pmax, and ∆p is the slope of the load dependent power consumption.

Also indicated in Fig. 1.3 and Table 1.2, is a sleep mode power consumption,

Psleep. In future base stations, fast deactivation of components, i.e. to put them

into sleep when there is nothing to transmit, is believed to be an important

solution to save energy. The sleep mode power consumption is introduced here

to capture such solutions.
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Figure 1.3 Power consumption for various BS types as a function of the RF output
power. An LTE system with 10MHz system bandwidth and 2×2 MIMO configuration
is considered. Macro BSs employ 3 sectors per site. Legend: PA: power amplifier, RF:
small signal RF transceiver, BB: baseband processor, DC: DC-DC converters, CO:
active cooling (only applicable to macro BS), MS: mains power supply.

Table 1.2. Power model parameters for different BS types

BS type NTRX Pmax [W] P0 [W] ∆p Psleep [W]

Macro 6 20.0 118.7 5.32 93.0

RRH 6 20.0 ?? ?? ??

Micro 2 6.3 53.0 3.1 39.0

Pico 2 0.13 6.8 4.0 4.3

Femto 2 0.05 4.8 7.5 2.9

1.4 Traffic Model

In order to provide a realistic analysis of the energy efficiency of wireless net-

works, it is essential to know the traffic demand to be served by the network.

Thus, it is important to identify the spatial and temporal variation of the traffic

demand both on large as well as small scale.
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1.4.1 Deployment Areas of Europe

The geographical distribution as well as the population densities are fairly sim-

ilar for most European countries; however, the Nordic countries (Finland, Nor-

way and Sweden) and Russia substantially deviate from the European average.

Let ad, 0≤ad≤1, denote the share of the area covered by deployment scenario d

normalized to the total area of a given country or region. The European average

of the geographical distribution ad of the considered deployment areas and the

corresponding population densities pd in citizen/km2 shown in Table 1.3 there-

fore excludes the Nordic countries and Russia. Note that in central districts of

a metropolis, the population density may exceed pd = 20, 000 citizen/km2, but

these are omitted due to their negligible covered area ad.

The network planning policy of European operators concentrate to serve the

most of the population and not on the amount of area covered [12]. That is, 2G

area coverage is almost 100%, while 3G coverage is below 40%. This reflects that

sparsely populated areas are served by the minimum service level as defined by

national telecommunication authorities, i.e., voice (2G) and low speed data con-

nection (GPRS). Following this trend, we assume that LTE is deployed in dense

urban, urban, suburban and rural areas only. For instance, German regulation

forces to serve “only” 90% of the population with broadband access [13], which

practically allows to skip scarcely populated areas.

1.4.2 Long-Term Large-scale Traffic Models

The objective for the long-term large-scale traffic models is to determine the

average served traffic on a certain time of day for a given deployment scenario.

Abstracting the models from current European cell planning maps, the following

methodology allows to deduce the daily traffic variations in terms of the actual

traffic demand per unit area:

1. define the average traffic demand per active subscriber for different terminal

types;

Table 1.3. Deployment Areas in Europe (Excluding Nordic and Russia)

Deployment d Population

density pd
[citizen/km2]

Covered

area ad

Dense urban 3000 1%

Urban 1000 2%

Suburban 500 4%

Rural 100 36%

Sparsely populated

& wilderness

25 57%
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Table 1.4. Estimated traffic demand ranges of terminal types in Europe in 2015

Terminal type k Average rate rk in [Mbps] Daily† [MB] Monthly† [GB]

PC 0.5 → 2 512 → 2048 16 → 64

Tablet 0.25 → 1 256 → 1024 8 → 32

Smartphone 0.0625 → 0.25 64 → 256 2 → 8

Reference PC (2010) 0.03125 → 0.125 32 → 128 1 → 4
† For notational convenience the exact values are rounded to the closest power of 2.

2. by virtue of a daily traffic profile the traffic volumes per subscriber are

obtained;

3. define relevant scenarios of different terminal/subscriber mixes;

4. determine the number of active users per unit area for the considered termi-

nal/subscriber mixes;

5. given the population densities for the respective deployments, the scenario

specific network traffic per unit area in [Mbps/km2] can be derived;

6. the total network traffic of an average European country is obtained by

weighted summing of the scenario specific network traffic

1.4.2.1 Traffic demand per active subscriber

The user generated data volume is tightly connected to operator policies and

data subscriptions plans. While the amount of traffic varies from country to

country, studies within the EARTH project revealed that the average rates per

active subscriber are independent of the deployment scenario d. For the envisaged

terminal types k we therefore propose to define a range of prospective traffic

demands per subscriber rk (in a representative Western European country) for

the year 2015, which applies to all considered deployments:

r PC users demand for bandwidth equivalent of providing, e.g., SDTV or even

HDTV for all active users, which translates to a data range of rk = [0.5, 2]

Mbps/user [14]. This range is equivalent of average and high-end DSL

demands of 2010.
r Tablet users demand for half of the bandwidth of PC users, rk = [0.25, 1]

Mbps/user.
r Smartphone users demand for a quarter of the bandwidth of a tablet user [14],

rk = [67.5, 250] kbps/user.
r As a benchmark reference PC users in 2010 demand for half the traffic vol-

ume of smartphone users in 2015, rk = [31.25, 125] kbps/user. This range is

equivalent to average and high-end HSPA traffic in 2010 [16, 17, 18].

The data rate requirements per subscriber for the considered terminal types are

listed in Table 1.4. We emphasize that the figures listed in Table 1.4 represent

average traffic demands; typically strong temporal and geographical deviations

with respect to these average values are experienced, e.g., one or two so-called

heavy users may fully utilize a cell even for extended time periods.
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Figure 1.4 Normalized average daily data traffic profile α̃(t) = α(t)/α̂, taken as a
reference for an European country.

1.4.2.2 Daily traffic variations

Clearly, not all subscribers are always active; rather the number of active sub-

scribers changes between busy and off-peak hours. In today’s networks 10–30%

of the data subscribers are active in the busy/peak hours; as an European aver-

age we assume that at peak hours a mobile broadband subscriber is active with

probability α̂=0.16. Thus, on average the generated traffic volume of terminal

type k at peak hours of duration T yields v̂k(T )= α̂rkT .

Let α(t), with 0≤α(t)≤α̂, define the daily variation of active users that cap-

tures the variations in average network traffic over a day. Based on internal

surveys on operator traffic data within the EARTH project and the Sandvine

report [15], the average network traffic follows the normalized daily variation

α̃(t) = α(t)/α̂ illustrated in Fig. 1.4. The EARTH project found that the daily

traffic variation α(t) is independent of the deployment d; hence the daily traffic

profile in Fig. 1.4 is valid for all deployments. Given the traffic variation over

time α(t), the generated data volume of a mobile subscriber over duration T

amounts to

vk(t, T ) = rk

∫ t+T

t

α(τ) dτ (1.3)

The obtained traffic volumes of the considered terminal types are summarized

in Table 1.4.

1.4.2.3 Scenarios of terminal & subscriber mixes

According to the expectations towards wireless Internet services, the fraction of

broadband data subscribers of the whole population will increase from year to

year and in the most mature European markets may reach 25% by 2015; however,
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the European average might be somewhat lower. Moreover, tablets, smartphones

and other mobile equipment, that are becoming increasingly popular already

today, are expected to stimulate additional traffic demand in Europe; and even

more so in North America, due to much lower mobile PC traffic compared to

Europe. Let sk denote the fraction of broadband data subscribers of the whole

population for terminal type k, different scenarios can be constructed that reflect

the expected share of mobile broadband subscribers in 2015:

r Scenario #1: sPC=20% of the population are heavy PCs users, requesting an

average data rate of rPC=2Mbps/user.
r Scenario #2: sPC=20% of the population are PC users, sPC=5% of the popu-

lation are tablet users, and sPC=50% of the population are smartphone users,

all of which are classfied as heavy users requesting an average data rate of

rPC=2Mbps, rtab=0.5Mbps and rfon=0.25Mbps. This scenario serves as an

upper bound on the envisaged traffic demain in 2015.
r Scenario #4: sPC=20% of the population are PC users, sPC=5% of the pop-

ulation are tablet users, and sPC=50% of the population are smartphone

users, of which one half is classfied as heavy users with rates rPC=2Mbps,

rtab=0.5Mbps and rfon=0.25Mbps, whereas the other half are classfied as

average users with 50% lower rates, which is rPC=1Mbps, rtab=0.25Mbps

and rfon=0.125Mbps. Based on [14], we consider this as the most relevant

European scenario for 2015.
r Scenario #5: serves as reference scenario for the contemporary traffic demand,

where srPC=10% of the population are reference PC users in 2010, requesting

a rate of rrPC=0.125Mbps.

1.4.2.4 Active subscribers

Given the geographical population data, the daily traffic variations and the ter-

minal & subscriber mixes established in Sections 1.4.1, 1.4.2.2 and 1.4.2.3, the

average number of active subscribers of a European country at a given time of

day can be quantified. Provided that the population is served by Nop operators,

each of which having a 1/Nop share of the total traffic volume, the average num-

ber of active subscribers of deployment d for terminal type k at time t is given

by

Uk,d(t) = α(t)pd
sk
Nop

in [subscribers/km2] (1.4)

The number of active users Uk,d(t) is scaled with the population density pd.

That is, taking dense urban as reference, the number of active users in urban,

suburban and rural deployments are 0.33, 0.16 and 0.033 times the dense urban

deployment, respectively.

1.4.2.5 Aggregated Traffic Demand

As the data volume per subscriber does not depend on the deployment scenario,

the generated network traffic is proportional to the population density. Given
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Table 1.5. Estimated area throughput and number of active users at busy hours in a dense
urban cell in Europe of 2015

Scenarios & mixes
Peak area throughput Active users

[Mbps/km2] per cell

#1 Heavy PCs 192 2− 3

#2 Heavy PCs & tablets 168 11

and smartphones

#4 mix of heavy & average PCs, 153 11

tablets and smartphones

#5 Reference PC from 2010 6 1− 2

the terminal specific data rates rk, the number of active users in a given deploy-

ment Uk,d(t), and the mix of terminal types, the generated traffic over a network

is determined by

Rd(t) =
∑

k
rkUk,d(t) =

∑
k
rk α(t)pd

sk
Nop

in [bit/s/km2] (1.5)

Aggregation over time yields the total traffic per unit area served during a dura-

tion T , that is

Rd =
1

8

∑
k
vk(t, T )pd

sk
Nop

in [Byte/km2] (1.6)

where the terminal specific data volume vk(t, T ) is given by (1.3). Table 1.5 shows

the area throughput Rd and number of active users per cell at peak traffic for

dense urban environment with 3000 citizen/km2 and 500m inter-site distance

between base stations [4]. Given the geographical distribution of the respec-

tive deployments ad, the total traffic of a country-wide network is obtained by

weighted summing

Rtot =

∑
d adRd

8
∑

d ad
=

∑
d

∑
k vk(t, T )adpd

sk
Nop

8
∑

d ad
in [Byte/km2] (1.7)

1.4.3 Statistical Short-Term Traffic Models

In order to model the fluctuation of the traffic in short-time scale, the packet dis-

tribution generated by the different type of applications is modeled statistically.

Since the same short-term traffic models per active user should be applied in all

deployment areas, the traffic demands in different deployments are derived from

the differences in the corresponding user density figures. A detailed description

of the traffic models can be found in [4].
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1.5 Green Metrics

What metric we use to capture efficiency determines how we think and act.

Therefore, it is important that we use metrics that guide us in the right direction.

When we discuss energy efficiency may refer to how much energy it takes to

achieve a certain amount of work, or we may refer to how much work we can

get achieved by using a certain amount of energy. The difference is subtle, but

important, as discussed in Section 1.5.1.

In many areas where efficiency is important, such as transportation, the defi-

nition of “work” is straightforward; e.g. a vehicle, a person, or a unit of weight

is moved a certain distance. In cellular networks it is not as easy to define what

exactly one unit of “work” constitutes. The network provides connectivity over

a certain area and it transports bits to mobile users. Users pay not only for the

served number of bits but also for the possibility to use the network everywhere

and anytime. Hence the area coverage provided by the network is important,

even when no user is transferring any bits. In order to capture both of these

aspects two different metrics will be introduced in Section 1.5.2.

1.5.1 Efficiency Metrics vs Consumption Metrics

A metric of energy usage can be expressed either as a consumption index or as

an efficiency index. In the automobile industry both the “miles per gallon” or

MPG metric and the “liters per 100 km” metric are commonly used. The MPG

metric is an efficiency index, i.e., a car that consumes less fuel will have a higher

metric compared to another car with higher fuel consumption. The “liters per

100 km” on the other hand is consumption metric, i.e., a car that consumes

less fuel will have a smaller metric. In essence these two indexes both contain

the same information, and hence it is straightforward to convert any efficiency

metric to the equivalent consumption metric and vice versa. However there are

subtle differences that may lure an observer to misleading conclusions.

The main benefit with an efficiency index, where the useful work is in the

nominator and the consumed energy is in the denominator (work/energy), is

that a larger metric means better performance, which many people find intu-

itive. The drawback of an efficiency index is that it is difficult to relate an effi-

ciency increase with the achieved energy savings. As an example, 20% better

MPG translates to only 16.7% less fuel (20% is 1.2 times larger distance corre-

spond to 1/1.2 = 0.83 of the original fuel consumption). The interpretation of an

efficiency metric becomes yet more difficult if two different upgrade options are

to be compared. This is visualised in Figure 1.5, drawing the efficiency metric

(left) and the consumption metric (right) over the consumed energy E (for a

fixed provided work). Fig. 1.5(a) illustrates that for a given reduction in energy

consumption ∆E = E1−E2, the lower the absolute energy consumption E1, the

larger the increase of the efficiency metric f(E)∝1/E. This implies that improving
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Figure 1.5 A linear consumption metric is easier to interpret than an inverted
efficiency metric.

a more inefficient system, with larger absolute energy consumption, will result

in a relatively small improvement of the efficiency metric. This may lead to an

underestimation of the improvements that actually provide the highest energy

savings ∆E. In contrast, a consumption metric where the energy use is in the

numerator, f(E)∝E, will always show the same improvement for a given ∆E.

Consumption metrics are therefore preferred, since they guide people to take

rationale decisions.

1.5.2 Energy Consumption Metrics in Cellular Networks

To capture the energy consumption perspective in the analysis, we employ the

two energy consumption indices:

r Power per area unit, measured in [W/m2];
r Energy per bit, measured in [J/bit].

The reason for arguing for two different metrics instead of only one is that they

both are relevant and they provide complementary information about the how

efficient the energy use in a network is.

The power per area unit metric is defined as the network average power usage

divided by the coverage area of the network, P/A, and is measured by the unit

[W/m2]. The metric is a measure for the total energy consumption and is closely

related to the CO2 emissions and the associated carbon footprint. Power per area

unit is particularly relevant at low traffic loads, as in this case the network is cov-

erage limited rather than capacity limited. Moreover, since the coverage area A,

for which the system is to be evaluated, is typically a predefined constant the

metric avoids quotient of variables. This prevents misleading conclusions since
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when forming the quotient of variables it is impossible to understand whether

an increase of the metric is due to the increase of the numerator, and/or the

decrease of the denominator.

In order to be meaningful the power per area metric needs to be complemented

by a quality metric. When using the [W/m2] metric it is important not to directly

compare the power per area values of two systems, if they deliver vastly different

performance. For instance, a dense network may consume more power per area

unit than a sparse network, but the dense network may provide significantly

higher user performance. However, given a minimum performance requirement,

e.g. the 10 th percentile user throughput shall be at least 1Mbps, the [W/m2]

metric provides a meaningful comparison of any two systems that both fulfill

these requirement(s). This metric is also proposed in [19]; however, in ETSI this

quantity is expressed as an efficiency metric, A/P , instead of the consumption

metric adopted here.

The metric [W/user] is also commonly used and may be derived from the

[W/m2] metric by applying the conversion factor [m2/user]. If the focus is on

evaluating the energy consumption by using a radio network system simulator,

which is the case here, then the [W/m2] metric is more convenient, since the

system load is typically adjusted by varying the number of active users. If the

purpose instead is to express the performance of a real network based on real

measurements, then the W/user metric might be the better choice (since the

area covered by a real network is difficult to estimate accurately).

The second metric, which measures the energy per bit in [J/bit], is defined as

the network energy consumption E during the observation period T , divided by

the total number of bits RT that were correctly delivered in the network. Since

the number of successfully transmitted bits is the average rate R, multiplied

by the observation period T , this metric could equivalently be described as the

average network power P=E/T in relation to the average data rate R, expressed

in [W/bps]. The energy consumption metric J/bit focuses on the amount of

energy spent per delivered bit and is hence an indicator of network bit delivery

efficiency, which may be important especially in scenarios where the traffic load

is high. The [J/bit] metric is commonly used in the literature, especially for

theoretical studies and single link evaluations. However, in the literature the

metric is often used as an efficiency metric in [bit/J], instead as the [J/bit]

metric proposed here.

Since both the numerator (the network energy consumption) and the denomi-

nator (the number of delivered bits) are typically variable, the metric is affected

both by changes in the energy consumption and by changes in the number of

delivered bits. Some caution is therefore required when using the J/bit metric.

The first thing to note is that, this metric approaches infinity as the traffic load

goes to zero. It is also interesting to note that the metric improves in case the

amount of delivered bits RT grow faster than the required energy use E. In this

respect the metric may be criticized as being self-optimizing. If we e.g. consider

a newly deployed system built for area coverage that has only few users then the
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energy used per bit will initially be extremely high. As time passes more users

will join the network and the bits they generate will drive the metric down, since

the extra users do not require any new base stations. Hence an operator may

claim that the energy efficiency in terms of J/bit is improving at an impressing

rate, while in fact the total energy consumption has increased and nothing has

been done to reduce the total energy consumption of the network. Basing deci-

sions only on this metric is certain to result in the conclusion that high data

volumes are the best way to improve efficiency. Small cells will be considered

more efficient than large cells, 4G more efficient than 3G and 2G, etc., simply

because of the higher bit-rates provided.

1.6 Case Study: Energy Efficiency of LTE

For short-term, small-scale evaluations a macro-cellular network with regular

hexagonal cell layout is implemented. 19 sites, each with 3 sectors, 10MHz band-

width operating at 2.1GHz carrier frequency is assumed. Moreover, 2×2 MIMO

transmission with adaptive rank adaption is assumed. The inter-site distance

(ISD) for the dense urban and urban environments is set to 500m, whereas the

ISD for suburban and rural areas is set to 1732m. The users are uniformly dis-

tributed, with population densities corresponding to the respective deployment

scenarios. The simulation parameters are taken from 3GPP specifications [4].

Two cases are simulated: a) Base stations without sleep mode, and b) Base sta-

tions with micro sleep during idle transmit intervals, i.e, neither data nor control

signals are transmitted.

The power per area unit P/A, expressed in [kW/km2], is depicted in Fig. 1.6.

As can be seen, the power consumption increases with the served traffic in the

network. In an urban scenario (see Fig. 1.6(a)), with an ISD of 500m correspond-

ing to a coverage area of 0.2165 km2 per site, the power per area unit is around

4.15 kW/km2 at low loads, whereas it approaches 5.1 kW/km2 at high loads. For

the network with micro sleep capable base stations, the corresponding figures are

3.5 kW/km2 at low loads and above 5 kW/km2 at high loads. For comparison,

an empty network when only control channels are transmitted, but no user data,

the power consumption equals 885W per site, which corresponds to a power per

area unit of 4.1 kW/km2. In the (hypothetical) extreme case, when nothing at

all is transmitted (i.e., no data and no control channels) so that the RF output

power is 0W, we obtain P/A=3.3 kW/km2. The power consumption per area

unit for suburban and rural areas, shown in Fig. 1.6(b), is substantially lower,

which is due to the increased ISD of 1732m, which corresponds to a coverage area

of 2.6 km2. However, the system throughput per area unit decreases accordingly,

due to the increased site coverage area.

Fig. 1.7 contains the energy consumption per delivered bit, E/(RT ) in

[kJ/Mbit], over the served data rate R in [Mbps]. Even though the total energy

consumption increases with the traffic load, the energy consumption per bit
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Figure 1.6 Power per area unit, P/A, of the downlink of a LTE radio access network
as a function of the system load.

decreases with traffic. That is, the number of delivered bits increases faster than

the network energy consumption. The dominating reason for this is the fact that

the power model (1.2) is associated with a fixed cost at Pout=0W RF output

power and when the traffic increases, this fixed cost is shared over a larger num-

ber of bits, which results into the energy per bit decrease.

In order to assess the expected performance of a country-wide area over a

day, short-term, small-scale evaluations are combined with the long-term traffic

models and the geographical distribution presented in Section 1.4. It is assumed

that no coverage is provided in the sparsely populated and wilderness areas and

hence, these areas are not included in the analysis. Moreover, the global traffic
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Figure 1.7 Energy per bit of the downlink of a LTE radio access network as a function
of the system load.

model in Section 1.4 is for the entire user population, whereas the short-term,

small-scale evaluations are performed for a single carrier, which is served by a

single operator. It is here assumed that the market share of the studied operator

is 30% and that this operator also carries 30% of the total data traffic.

The outcome of the aggregation indicates that with the models and assump-

tions used in this evaluation, the average power per area unit is about

0.6 kW/km2 without sleep modes, and slightly above 0.5 kW/km2 for the net-

work with micro sleep capable base stations, corresponding to an energy saving

of 15–20%. These values are almost independent of whether high, medium, or low

traffic density is assumed, i.e., the power consumption is mostly insensitive to
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the traffic load. One reason for this is that given the traffic and deployment mod-

els used here, the network typically operates in the very low load regime, where

transmissions of control signals dominate over data. These evaluations highlight

the fact that on average cellular networks are primarily providing coverage, and

therefore mainly operate at low traffic loads.

1.7 Relation of E3F to the Carbon Footprint of Mobile
Communication Systems

Statistical analysis and projections presented in [2] suggest that global radio

access networks might increase from 3.3 million BS sites in 2007 to more than

11.2 million BS sites in 2020 and the total power consumption is expected to

grow from 49TWh in 2007 to 98TWh in 2020. During the same period the

average traffic per site will increase from 62 kbit/s to somewhere between 11

to 18Mbit/s. This implies that by 2020 the radio access network will have to

improve its energy efficiency from about 28 J/kbit to 0.1–0.06 J/kbit.

The simulation results for a 10MHz LTE system as presented in Section 1.6

suggest for the dense urban case that data rates of up to 26Mbit/s/site are

attainable with acceptable user rates on average as well as on the cell edge. In the

ideal case where all the traffic is carried by a single operator the efficiency of the

LTE system is about 0.03 J/kbit. In the more realistic case where one operator

has only 30% market share, i.e., there are more than three operators present, all

sites operate in lower load conditions, increasing the power consumtion in Joule

per bit by a factor of three. The overall efficiency obtained then is at about

0.1 J/kbit. This compares well with the targeted efficiency values of 0.1 J/kbit

obtained as a global average from the statistical models and, we can conclude

that LTE already provides the potential for the required reduction in Joule per

bit efficiency.

The simulation based analysis in Section1.6 assumes a pure LTE network,

which is hardly present in real deployments. Instead, the currently installed base

of equipment will account for the major part of energy consumption and user

demands for data services will to a large extent be fulfilled by heterogeneous

deployments of different standards and cell sizes. In order to achieve the targeted

efficiency values further optimization work is required, e.g. by smart deployment

and dynamic resource and network management. In particular, there is a vast

potential in improving the energy efficiency when the network is not transmitting

at maximum load, which is almost always encountered in practice, as a wireless

network is primarily providing coverage. In this case, however, the energy effi-

ciency is particularly poor, as vigorously highlighted by the system simulation

results in Section1.6.
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1.8 Fundamental Challenges And Future Potential

Traditionally, radio access research both in the academy and the industry focuses

on the challenge to achieve as high data rates as possible for a given maximum

transmission power. Closer analyzing the challenges and the possibilities for the

research area of network energy efficiency it is found that there is a second

challenge, which is still not widely addressed or even accepted in the community.

This second challenge addresses the power consumption of the system when it is

not transmitting any data. The first challenge is thoroughly addressed in research

and specifications to allow for high peak data rates and capacity, for instance

in LTE and HSPA. This very important work, which has been a main driver

for the success of mobile telecommunication, as well as rapidly and steadily

decreasing energy consumption per bit for the 3GPP technologies, will need

to be continued although it is clear that it will be more and more difficult to

maintain the rate of improvement with sinking energy consumption per bit. The

second challenge, exploiting system operation whilst not transmitting, either

by improving the energy efficiency during idle operation, or by finding efficient

solutions to eliminate empty resource block transmissions, has so far been a

neglected research area. Consequently, this is where the big unexplored potential

lies. It is important to understand that this second challenge does not only

address empty cells and no load scenarios. In fact the potential of the non-

transmitting scenario depends strongly on the considered time scale. Considering

a traditional O&M time scales of 15 minutes there may not be many periods,

if any, without any transmissions at all. However, LTE scheduling decisions are

made per ms, i.e. per every LTE subframe; when addressing this time scale

instead, the possibility for idle subframes becomes considerable, even in fairly

loaded cells. EARTH-reference scenario simulations of a network covering the

dense urban, the urban and the sub-urban areas of a country or region, and

assuming the medium traffic profile yield that more than 98% of the subframes

do not contain any transmitted data: this number can be seen as a form of

theoretical limit for how large the potential is for the second challenge. As in

this 98% of time about 97% of energy is consumed by the system, mechanisms

addressing individual subframes without data transmissions could deliver up to

97% of power savings. This is in addition to the power reduction achievable

by features addressing subframes that are utilized for data transmissions. Some

examples of future potentials in energy saving are given by improvements at

component level, e.g. introducing new power management concepts able to adapt

to varying traffic load. In fact introducing scalability into hardware components,

and supporting them by dynamic power management, enables the adaptation of

energy consumption to actual performance requirements. Further power savings

are facilitated by the deactivation of components in time periods of no operation.

These hardware characteristics could be exploited at packet scheduling level,

that has in charge to efficiently allocate radio resources, in order to properly
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manage empty subframes and drive components deactivation. Finally, it should

be made clear that different solutions can be envisaged by considering different

time perspectives: starting from what energy saving can be achieved on ms,

or even mu s scale, up to the possibility of savings when taking down cells or

switching off whole BSs, something which will require actions on a time scale

in the order of seconds or even minutes. As a matter of fact, all solutions on

different time scales constitute part of the road toward the future, ultimately

energy-efficient radio-access networks.

1.9 Conclusions

In order to identify the key levers for energy savings the power consumption of

mobile communication systems needs to be quantified. This includes sophisti-

cated power models that map the radiated RF power to the supply power of a

BS site, as well as traffic and deployment models that extend short-term small-

scale evaluations to the country wide power consumption of a network over a

whole day or week. Numerical results reveal that for current network design and

operation, the power consumption is mostly independent of the traffic load. This

highlights the vast potential for energy savings by improving the energy efficiency

of BSs at low load.
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